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This article discusses the concept of information and its intimate relationship with physics.
After an introduction of all the necessary quantum mechanical and information theoretical

concepts we analyse Landauer’s principle which states that the erasure of information is

inevitably accompanied by the generation of heat. We employ this principle to rederive a

number of results in classical and quantum information theory whose rigorous mathematical

derivations are diçcult. This demonstrates the usefulness of Landauer’s principle and
provides an introduction to the physical theory of information.

1. Introduction

In recent years great interest in quantum information
theory has been generated by the prospect of employing its
laws to design devices of surprising power [1 ± 7]. Ideas
include quantum computation [2,5,8] , quantum teleporta-
tion [7,9] and quantum cryptography [4,5,10,11] . In this
article, we will not deal with such applications directly, but
rather with some of the underlying concepts and physical
principles . Rather than presenting very abstract mathema-
tical proofs originating from the mathematical theory of
information, we will base our arguments as far as possible
on the paradigm that information is physical. In particular,
we are going to employ the fact that the erasure of one bit
of information always increases the thermodynamical
entropy of the world by k ln 2. This principle, originally
suggested by Rolf Landauer in 1961 [12,13] , has been
applied successfully by Charles Bennett to resolve the
notorious Maxwell’s demon paradox [13,14]. In this article
we will argue that Landauer’s principle provides a bridge
between information theory and physics and that, as such,
it sheds light on a number of issues regarding classical and
quantum information processing and the truly quantum
mechanical feature of entanglement and non-local correla-
tions [7]. We introduce the basic concepts both at an
informal level as well as a more mathematical level to allow
a more thorough understanding of these concepts. This

enables us to approach and answer a number of questions
at the interface between pure physics and technology such
as:

(1) What is the greatest amount of classical information
we can send reliably through a noisy classical or
quantum channel?

(2) Can quantum information be copied and com-
pressed as we do with classical information on a
daily basis?

(3) If entanglement is such a useful resource, how much
of it can be extracted from an arbitrary quantum
system composed of two parts by acting locally on
each of the two?

The full meaning of these questions and their answer will
gradually emerge after explaining some of the unpleasant
but unavoidable jargon used to state them. For the time
being, our only remark is that Landauer’s principle will be
our companion in this journey. A glance at what lies ahead
can be readily obtained by inspecting the `map’ of this
paper in ®gure 1.

A ®nal word on the level of this article: the concepts of
entanglement and quantum information are of great
importance in contemporary research on quantum me-
chanics, but they seldom appear in graduate textbooks on
quantum mechanics. This article, while making little claim
to originality in the sense that it does not derive new results,
tries to ®ll this gap. It provides an introduction to the
physical theory of information and the concept of
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entanglement and is written from the perspective of an
advanced undergraduate student in physics, who is eager to
learn, but may not have the necessary mathematical
background to directly access the original sources. This
pedagogical outlook is also re¯ected in the choice of
particularly readable references, mainly textbooks and
lecture notes, that we hope the reader will consult for a
more comprehensive treatment of the advanced topics
[15 ± 21]. We also try out best to use mathematics as a
language rather than as a weapon. Every idea is ®rst
motivated, then illustrated with a non-trivial example and
occasionally extended to the general case by using Land-
auer’s principle. The reader will not be drowned in a sea of
indices or obscure symbols, but he will (hopefully) be
guided to work out the simple examples in parallel with the
text. Most of the subtle concepts in quantum mechanics can
indeed be illustrated using simple matrix manipulations . On
the other hand, the choice to actively involve the reader in
calculations makes this article unsuitable for bed-time
readings. In fact, it is a good idea to keep a pen and plenty
of blank paper within reach, while you read on.

2. Classical information encoded in classical systems

2.1. The bit

In this section we will try to build an intuitive under-
standing of the concept of classical information. A more
quantitative approach will be taken in section 2.5, but for
the full blown mathematical apparatus we refer the reader
to textbooks, e.g. [21].

Imagine that you are holding an object, be it an array of
cards, geometric shapes or a complex molecule and we ask
the following question: what is the information content of
this object? To answer this question, we introduce another
party, say a friend, who shares some background knowl-

edge with us (e.g. the same language or other sets of prior
agreements that make communication possible at all), but
who does not know the state of the object. We de®ne the
information content of the object as the size of the set of
instructions that our friend requires to be able to
reconstruct the object, or better the state of the object.
For example, assume that the object is a spin-up particle
and that we share with the friend the background knowl-
edge that the spin is oriented either upwards or downwards
along the z direction with equal probability (see ®gure 2 for
a slightly more involved example). In this case, the only
instruction we need to transmit to another party to let him
recreate the state is whether the state is spin-up ≠ or spin-
down .̄ This example shows that in some cases the

Figure 1. The essential structure of the article is captured in this diagram.

Figure 2. An example of a decision tree. Two binary choices

have to be made to identify the shape (triangle or square) and the

orientation (horizontal or rotated). In sending with equal

probability one of the four objects, one therefore transmits 2

bits of information.
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instruction transmitted to our friend is just a choice
between two alternatives. More generally, we can reduce
a complicated set of instructions to n binary choices. If that
is done we readily get a measure of the information content
of the object by simply counting the number of binary
choices. In classical information theory, a variable which
can assume only the values 0 or 1 is called a bit.
Instructions to make a binary choice can be given by
transmitting 1 to suggest one of the alternative (say arrow
up ≠) and 0 for the other (arrow down )̄. To sum up, we
say that n bits of information can be encoded in a system
when instructions in the form of n binary choices need to be
transmitted to identify or recreate the state of the system.

2.2. Information is physical

In the previous subsection we have introduced the concept
of the bit as the unit of information. In the course of the
argument we have mentioned already that information can
be encoded in physical systems. In fact, looking at it more
closely, we realize that any information is encoded,
processed and transmitted by physical means. Physical
systems such as capacitors or spins are used for storage,
sound waves or optical ®bres for transmission and the laws
of classical mechanics, electrodynamics or quantum me-
chanics dictate the properties of these devices and limit our
capabilities for information processing. These rather
obvious looking statements, however, have signi®cant
implications for our understanding of the concept of
information as they emphasize that the theory of informa-
tion is not purely a mathematical concept, but that the
properties of its basic units are dictated by the laws of
physics. The diŒerent laws that rule in the classical world
and the quantum world for example results in diŒerent
information processing capabilities and it is this insight that
sparked the interest in the general ®eld of quantum
information theory.

In the following we would like to further corroborate the
view that information and physics should be uni®ed to a
physical theory of information by showing that the process
of erasure of information is invariably accompanied by the
generation of heat and that this insight leads to a resolution
of the long-standing Maxwell demon paradox which is
really a prime example of the deep connection between
physics and information. The rest of the article will then
attempt to apply the connection between erasure of
information and physical heat generation further to gain
insight into recent results in quantum information theory.

2.3. Erasing classical information from classical systems:

Landauer’s principle

We begin our investigations by concentrating on classical
information. In 1961, Rolf Landauer had the important

insight that there is a fundamental asymmetry in the way
Nature allows us to process information [12]. Copying
classical information can be done reversibly and without
wasting any energy, but when information is erased there is
always an energy cost of kT ln 2 per classical bit to be paid.
For example, as shown in ®gure 3, we can encode one bit of
information in a binary device composed of a box with a
partition. The box is ®lled with a one-molecule gas that can
be on either side of the partition, but we do not know which

one. We assume that we erase the bit of information
encoded in the position of the molecule by extracting the
partition and compressing the molecule in the right part of
the box irrespective of where it was before. We say that
information has been erased during the compression
because we will never ®nd out where the molecule was
originally . Any binary message encoded is lost! The
physical result of the compression is a decrease in the
thermodynamical entropy of the gas by k ln 2. The
minimum work that we need to do on the box is kT ln 2,
if the compression is isothermal and quasi-static. Further-
more an amount of heat equal to kT ln 2 is dumped in the
environment at the end of the process.

Landauer conjectured that this energy/entropy cost
cannot be reduced below this limit irrespective of how the
information is encoded and is subsequently erased–it is a
fundamental limit. In the discussion of the Maxwell demon

(a) (b)

Figure 3. We erase the information of the position of the atom.

First we extract the wall separating the two halves of the box.

Then we use a piston to shift the atom to the left side of the box.

After the procedure, the atom is on the left hand side of the box

irrespective of its initial state. Note that the procedure has to

work irrespective of whether the atom is initially on the right (a)

or on the left side (b).
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in the next section we will see that this principle can be
deduced from the second law of thermodynamics and is in
fact equivalent to it [22]. Landauer’s discovery is important
both theoretically and practically as on the one hand it
relates the concept of information to physical quantities
like thermodynamical entropy and free energy and on the
other hand it may force the future designers of quantum
devices to take into account the heat production caused by
the erasure of information although this eŒect is tiny and
negligible in today’s technology.

At this point we are ready to summarize our ®ndings on
the physics of classical information.

(1) Information is always encoded in a physical system.
(2) The erasure of information causes a generation of

kT ln 2 of heat per bit in the environment.

Armed with this knowledge we will present the ®rst
successful application of the erasure principle: the solution
of the Maxwell’s demon paradox that has plagued the
foundations of thermodynamics for almost a century.

2.4. Maxwell’s demon deposed

2.4.1. The paradox. In this section we present a simpli-
®ed version of the Maxwell’s demon paradox suggested by
Leo Szilard in 1929 [23]. It employs an intelligent being or a
computer of microscopic size, operating a heat engine with
a single molecule working ¯uid (®gure 4). In this scheme,
the molecule is originally placed in a box, free to move in
the entire volume V as shown in step (a). Step (b) consists
of inserting a partition which divides the box into two equal
parts. At this point the Maxwell’s demon measures in

which side of the box the molecule is and records the result
(in the ®gure the molecule is pictured on the right-hand side
of the partition as an example). In step (c) the Maxwell
demon uses the information to replace the partition with a
piston and couple the latter to a load. In step (d) the one-
molecule gas is put in contact with a reservoir and expands
isothermically to the original volume V. During the
expansion the gas draws heat from the reservoir and does
work to lift the load. Apparently the device is returned to
its initial state and it is ready to perform another cycle
whose net result is again full conversion of heat into work,
a process forbidden by the second law of thermodynamics.

Despite its deceptive simplicity, the argument above has
missed an important point: while the gas in the box has
returned to its initial state, the mind of the demon has not!
In fact, the demon needs to erase the information stored in
his mind for the process to be truly cyclic. This is because
the information in the brain of the demon is stored in
physical objects and cannot be regarded as a purely
mathematical concept! The ®rst attempts to solve the
paradox had missed this point completely and relied on the
assumption that the act of acquisition of information by the
demon entails an energy cost equal to the work extracted by
the demonic engine, thus preventing the second law to be
defeated. This assumption is wrong! Information on the
position of the particle can be acquired reversibly without
having to pay the energy bill, but erasing information does
have a cost! This important remark was ®rst made by
Bennett in a very readable paper on the physics of
computation [14]. We will analyse his argument in some
detail. Bennett developed Szilard’s earlier suggestion [23]
that the demon’s mind could be viewed as a two-state
system that stores one bit of information about the position
of the particle. In this sense, the demon’s mind can be an
inanimate binary system which represents a signi®cant step
forward, as it rids the discussion from the dubious concept
of intelligence . After the particle in the box is returned to
the initial state the bit of information is still stored in the
demon’s mind (i.e. in the binary device). Consequently, this
bit of information needs to be erased to return the demon’s
mind to its initial state. By Landauer’s principle this erasure
has an energy cost

Werasure ˆ ¡ kT ln 2 . …1†

On the other hand, the work extracted by the demonic
engine in the isothermal expansion is

Wextracted ˆ ‡ kT ln 2 . …2†

All the work gained by the engine is needed to erase the
information in the demon’s mind, so that no net work is
produced in the cycle. Furthermore, the erasure transfers
into the reservoir the same amount of heat that was drawn

Gas�expands�converting�heat�from�reservoir�to�work

Demon�inserts�piston

Demon�memory

r

(c)

(b)(a)

(d)

Demon�determines�position�of�atom

Figure 4. A schematical picture of Szilard’s engine of a box

®lled with a one atom gas. Initially the position of the atom is

unknown. Then the demon measures the position and depending

on the outcome inserts a piston. Then the gas expands and

thereby does work on a load attached to the piston. This

procedure is repeated and we apparently do work at the sole

expense of extracting heat from one reservoir only.
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from it originally . So there is no net ¯ow of heat either.
There is no net result after the process is completed and the
second law of thermodynamics is saved! The crucial point
in Bennett’s argument is that the information processed by
the demon must be encoded in a physical system that obeys
the laws of physics. The second law of thermodynamics
states that there is no entropy decrease in a closed system
which undergoes a cyclic transformation. Therefore if we
let the demon measure Szilard’s engine we need to include
the physical state he uses to store the information in the
analysis, otherwise there would be an interaction with the
environment and the system would not be closed. One
could also view the demon’s mind as a heat bath initially at
zero temperature. After storing information in it, the mind
appears to be an outside observer like a random sequence
of digits and one could therefore say that the demon’s mind
has been heated up. Having realized that the demon’s mind
is a second heat bath, we now have a perfectly acceptable
process that does not violate the second law of thermo-
dynamics.

2.4.2. Generalized entropy. The solution of the paradox
presented in the last section views the `brain of the demon’
as a physical system to be included in the entropy balance
together with the box that is being observed (see part (b)

of ®gure 5). A diŒerent approach can be taken if one does
not want to consider explicitly the workings of the
demon’s mind, but just treat it as an external observer
that obtains information about the system (see part (a) of
®gure 5). This is done by including in the de®nition of the
entropy of the system a term which represents the
knowledge that the demon has on the state of the system
together with the well known term representing how
ordered the state is [13,24] .

In the context of Szilard’s engine we found that the
demon extracts from the engine an amount of work given by

Wextracted ˆ ¡kT ln 2 ˆ DQ ˆ TDS , …3†

where DS is the change of thermodynamical entropy in the
system when the heat DQ is absorbed from the environ-
ment. On the other hand, to erase his memory he uses at
least an equal amount of work given by

Wextracted ˆ ¡kT ln 2 ˆ ¡TI , …4†

where I denotes the information required by the demon to
specify on which side of the box the molecule is times the
scaling factor k ln 2. In this case the information is just one
bit. The scaling factor is introduced for consistency because
the de®nition of information is given in bits as a logarithm
in basis 2 of the number of memory levels in the demon’s
mind.

The total work gained (equal to the total heat exchanged
Qtotal since the system is kept at constant temperature T) is
thus given by

Wtotal ˆ Werasure ‡ Wextracted ˆ Qtotal ˆ T…DS ¡ I† ˆ 0 . …5†

This suggests that the second law of thermodynamics is not
violated if we introduce a generalized de®nition of entropy
I (in bits) as the diŒerence of the thermodynamical entropy
of the system DS and the information about the system I

possessed by an external observer.

I ˆ DS ¡ I . …6†

The idea of modifying the de®nition of thermodynamical
entropy that represents an objective property of the
physical system with an `information term’ relative to an
external observer appears bizarre at ®rst sight. Physical
properties like entropy identify and distinguish physical
states. By introducing a notion as information directly in
the second law of thermodynamics we somehow bolster the
view that an ensemble composed of partitioned boxes each
containing a molecule in a position unknown to us is not
the same physical state than an ensemble in which we know
exactly on which side of the partition the molecule is in
each box. Why? Because we can extract work from the

(b)

(a)

Figure 5. A ®gure that shows the two diŒerent viewpoints

discussed in this section. The demon is outside the system which

consists of the box and the atom only (a) or the demon and the

box form a joint system that is closed.
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second state by virtue of the knowledge we gained, but we
cannot do the same with the ®rst. We will encounter similar
arguments in later sections when we study the concept of
information in the context of quantum theory. For the time
being, we remark that the approach presented in this
section to the solution of Maxwell’s demon paradox adds
new meaning to the slogan information is physical.
Information is physical because it is always encoded in a
physical system and also because the information we
possess about a physical system contributes to de®ne the
state of the system.

2.5. The information content of a classical state in bits

So far we have discussed how information is encoded in a
classical system and subsequently erased from it. However,
we really have not quanti®ed the information content of a
complicated classical system composed of many compo-
nents, each of which can be in one of n states with
probability pn. This problem is equivalent to determining
the information content of a long classical message. In fact,
a classical message is encoded in a string of classical objects
each representing a letter from a known alphabet occurring
with a certain probability . The agreed relation between
objects and letters represents the required background
knowledge for communication. Bob sends this string of
objects to Alice. She knows how the letters of the alphabet
are encoded in the objects, but she does not know the
message that Bob is sending. When Alice receives the
objects, she can decode the information in the message,
provided that none of the objects has been accidentally
changed on the way to her. Can we quantify the
information transmitted if we know that each letter qi

occurs in the message with probability pi? Let us begin with
some hand-waving which is followed in the next section by
a formally correct argument. Assume that our alphabet is
composed of only two letters 1 and 0 occurring with
probability p1 = 0.1 and p0 = 0.9 respectively. Suppose we
send a very long message, which is the average information
sent per letter? NaõÈvely, one could say that if each letter can
be either 1 or 0 then the information transmitted per letter
has to be one bit. But this answer does not take into account
the diŒerent probabilitie s associated with receiving a 1 or a
0. For example, presented with an object Alice can guess its
identity in 90% of the cases by simply assuming it is 0. On
the other hand, if the letters 1 and 0 come out with equal
probability, she will guess correctly only 50% of the time.
Therefore her surprise will usually be bigger in the second
case as she does not know what to expect. Let us quantify
Alice’s surprise when she ®nds letter i which normally
occurs with probability pi by

surprise letter i ˆ log
1

pi
. …7†

We have chosen the logarithm of 1/pi because if we guess
two letters, then the surprise should be additive, i.e.

log
1

pi

1

pj
ˆ log

1

pi
‡ log

1

pj
.

ˆ surprise letter i ‡ surprise letter j . …8†

and this can only be satis®ed by the logarithm. Now we can
compute the average surprise, which we ®nd to be given by
the Shannon entropy

H ˆ
X

i

pi log
1

pi
ˆ ¡

X

i

pi log pi . …9†

This argument is of course hand-waving and therefore the
next section addresses the problem more formally by asking
how much one can compress a message, i.e. how much
redundancy is included in a message.

2.5.1. Shannon’s entropy. In 1948 Shannon developed a
rigorous framework for the description of information and
derived an expression for the information content of the
message which indeed depends upon the probability of each
letter occurring and results in the Shannon entropy. We will
illustrate Shannon’s reasoning in the context of the example
above. Shannon invoked the law of large numbers and
stated that, if the message is composed of N letters where N

is very large, then the typical messages will be composed of
Np1 1’s and Np0 0’s. For simplicity, we assume that N is 8
and that p1 and p0 are 1

8
and 7

8
respectively. In this case the

typical messages are the 8 possible sequences composed of 8
binary digits of which only one is equal to 1 (see left side of
®gure 6). As the length of the message increases (i.e. N gets
large) the probabilit y of getting a message which is all 1’s or
on any other message that diŒers signi®cantly from a
typical sequence is negligible so that we can safely ignore
them. But how many distinct typical messages are there? In

Figure 6. The idea behind classical data compression. The most

likely sequences are relabelled using fewer bits while rare

sequences are discarded. The smaller number of bits still allows

the reconstruction of the original sequences with very high

probability.
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the previous example the answer was clear: just 8. In the
general case one has to ®nd in how many ways the Np1 1’s
can be arranged in a sequence of N letters? Simple
combinatorics tells us that the number of distinct typical
messages is

N
Np1

ˆ
N!

…Np1 †!…Np0 †!
…10†

and they are all equally likely to occur. Therefore, we can
label each of these possible messages by a binary number.
If that is done, the number of binary digits I we need to
label each typical message is equal to log2 [N!/
(Np1)!(Np0)!)]. In the example above each of the 8 typical
messages can be labelled by a binary number composed
by I = log2 8 = 3 digits (see ®gure 6). It therefore makes
sense that the number I is also the number of bits encoded
in the message, because Alice can unambiguously identify
the content of each typical message if Bob sends her the
corresponding binary number, provided they share the
background knowledge on the labelling of the typical
messages. All other letters in the original message are
really redundant and do not add any information! When
the message is very long, almost any message is a typical
one. Therefore, Alice can reconstruct with arbitrary
precision the original N bits message Bob wanted to send
her just by receiving I bits. In the example above, Alice
can compress an 8 bit message down to 3 bits. However,
the eçciency of this procedure is limited when the
message is only 8 letters long, because the approximation
of considering only typical sequences is not that good. We
leave to the reader to show that the number of bits I

contained in a large N-letter message can in general be
written, after using Stirling’s formula, as

I ˆ ¡N…p1 log p1 ‡ p0 log p0† . …11†

If we plug the numbers 1
8

and 7
8

for p0 and p1 respectively in
equation (11), we ®nd that the information content per
symbol I/N when N is very large is approximately 0.5436
bits. On the other hand, when the binary letters 1 and 0
appear with equal probabilities , then compression is not
possible, i.e. the message has no redundancy and each letter
of the message contains one full bit of information per
symbol. These results match nicely the intuitive arguments
given above.

Equation (11) can easily be generalized to an alphabet of
n letters qi each occurring with probabilitie s pi. In this case,
the average information in bits transmitted per symbol in a
message composed of a large number N of letters is given
by the Shannon entropy:

I

N
ˆ Hfpig ˆ ¡

Xn

iˆ1

pi log pi . …12†

We remark that the information content of a complicated
classical system composed of a large number N of
subsystems, each of which can be in any of n states
occurring with probabilitie s pi, is given by N ´H{pi}.

2.5.2. Boltzmann versus Shannon entropy. The mathe-
matical form of the Shannon entropy H diŒers only by a
constant from the entropy formula derived by Boltzmann
after counting how many ways there are to assemble a
particular arrangement of matter and energy in a physical
system.

S ˆ ¡k ln 2
Xn

iˆ1

pi log pi . …13†

To convert one bit of classical information in units of
thermodynamical entropy we just need to multiply by k

ln 2. By Landauer’s erasure principle , the entropy so
obtained is the amount of thermodynamical entropy you
will generate in erasing the bit of information.

Boltzmann statistical interpretation of entropy helps us
to understand the origin of equation (6). Consider our
familiar example of the binary device in which the molecule
can be on either side of the partition with equal
probabilities . An observer who has no extra knowledge
will use Boltzmann’s formula and work out that the
entropy is k ln 2. What about an observer who has 1 extra
bit of information on the position of the molecule? He will
use Boltzmann’s formula again, but this time he will use the
values 1 and 0 for the probabilities , because he knows on
which side the molecule is. After plugging these numbers in
equation (13), he will conclude that the entropy of the
system is 0 in agreement with the result obtained if we use
equation (6). The acquisition of information about the state
of a system changes its entropy simply because the entropy
is a measure of our ignorance of the state of the system as is
transparent from Boltzmann’s analysis .

2.6. Sending classical information through a noisy

classical channel

In the previous section, we found that the Shannon entropy
measures the information content in bits of an arbitrary
message whose letters are encoded in classical objects.
Throughout our discussion, we made an important
assumption: that the message is encoded and transmitted
to the recipient without errors. It is obvious that this
situation is quite unrealistic. In realistic scenarios commu-
nication errors are unavoidable . To the physicist’s eyes, the
origin of noise in communication can be traced all the way
down to the unavoidabl e interaction between the environ-
ment and the physical systems in which each letter is
encoded. The errors caused by the noise in the commu-
nication channel cannot be eliminated completely. How-
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ever, one hopes to devise a strategy that enables the
recipient of the message to detect and subsequently correct
the errors, without having to go all the way to the sender to
check the original message. This procedure is sometimes
referred to as coding the original message.

2.6.1. Coding a classical message: an example. For
example, imagine that Bob wants to send to Alice a 1 bit
message encoded on the left hand side (encode a 0) or the
right hand side (encode a 1) of a ®nite potential barrier.
Unfortunately, the system is noisy and there is a probability
of 1

100 for the binary letter to ¯ip (i.e. 1 ® 0 or 0 ® 1). For
example, a thermal ¯uctuation induced by the environment
may cause the particle in the encoding device to overcome
the potential barrier and go from the left hand side to the
right hand side. Alice, who is not aware of this change, will
therefore think that Bob attempted to send a 1 and not a 0.
This event occurs with 1% probabilit y so it is not that rare
after all. On the other hand, the (joint) probability that two
such errors occur in the same message is only 0.01%
( 1
100

´ 1
100

). Alice and Bob decide to ignore the unlikely
event of two errors happening in one encoding but they still
want to protect their message against single errors. How
can they achieve this?

One strategy is to add extra digits to the original message
and dilute the information contained in it among all the
binary digits available in the extended message. Here is an
example. Alice and Bob add two extra digits. Now their
message is composed of 3 binary digits, but they still want
to get across only one bit of information. So they agree that
Alice will read a 1 whenever she receives the sequence 111
and a 0 when she receives 000.

The reader can see that this encoding ensures safer
communication, because the worst that can happen is that
Alice receives a message in which not all the digits are either
0’s or 1’s, for example 101. But that is not a big deal. In this
case the original message was clearly a 111, because we have
allowed for single errors only. Under this assumption, any
original message of the form 000 can never get transformed
in 101 because that requires ¯ipping at least two bits.

This strategy protects the message from single errors and
therefore ensures that the error rate in the communication
is reduced down to 0.01% (the probability of double
errors). By simply adding two other extra bits to the
encoded message Bob can protect the message against
double errors and reduce the error rate by two orders of
magnitude (i.e. the probability of triple errors). Quite
obviously one can make the error rate as small as possible
but at the price of decreasing the ratio of bits transmitted/
binary letters employed. Is it possible to achieve a ®nite
ratio bits transmitted/binary letters employed and an
arbitrarily small error rate in the decoded messages? We
will address this question, which was ®rst answered by
Shannon, in the next section.

2.6.2. The capacity of a noisy classical channel via Land-

auer’s principle . Maybe surprisingly , one can indeed bring
the error rate in the received message in communication
arbitrarily close to zero, provided that the actual message
of length N bits is `coded’ in a much longer message of size
NC bits. The actual construction of eçcient strategies to
code a message is a task that requires a lot of ingenuity, but
is not what we are after. Our concern here is to answer the
following more fundamental question:

Given that the probability of error is q, what is the largest

number of bits N that we can transmit reliably through a

noisy channel after encoding them in a larger message of
size NC bits?

In other words we want a bound on the classical
information capacity of a noisy channel. We start by
remarking that if the coded message is composed of NC

bits, then the average number of errors will be qNC. If we
let the size of the message be very large, the probability of
getting a number of errors diŒerent from the average value
becomes vanishing small. In the asymptotic limit one will
expect exactly qNC bits to be aŒected by errors in the NC

bits message. However, there are many ways in which qNC

errors can be distributed in the NC bits of the original
message. In fact, we worked out the exact number in the
section on the Shannon entropy and it is given by

number of ways the errors

can be distributed
ˆ NC

qNC
. …14†

The problem there was slightly diŒerent, but after rephras-
ing the argument a bit we can conclude that in order to
specify how the qNC errors are distributed among the NC

message bits you need n bits of information, where n is
given by

n ˆ log
NC

qNC

Å ¡NC‰q log q ‡ …1 ¡ q† log …1 ¡ q†ä ˆ NCH…q† . …15†

The reader should convince himself that equation (15) can
be derived following the same steps that led us to equation
(11). One just needs to rename the variables.

The short calculation above may inspire the following
idea. Bob can send only NC bits in total and he knows that
he needs NCH(q) bits to specify the position of the errors.
All he has to do, then, is to allocate NCH(q) binary digits to
store the information on the position of the errors. At that
point the remaining NC –NCH(q) binary digits will be fully
available for safe communication. Unfortunately, Bob
cannot implement this idea directly because it requires
him to know, in advance, which letters of the message are
going to be aŒected by errors. But the errors are random
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and they would occur even in the letters that supposedly
store information on their positions ! But there is something
to be learned from this suggestion anyway.

Suppose, instead, that Bob had diluted the information
he wants to transmit among all the letters of the message as
shown in the last section. When Alice receives the string of
binary digits and she deciphers the message, she gains
knowledge of the actual message, but also the information
necessary to extract the message from all the digits. This
extra amount of information is implicitly provided by the
coding technique and it is also diluted among all the letters
in the message. To see this point more clearly, let us use
Landauer’s principle and ask how much entropy Alice
generates when she decides to erase the message sent by
Bob. For simplicity, let us stick to our simple example
where Bob sends 3 bits to eŒectively transmit only a 1 bit
message. In order to erase the information sent by Bob,
Alice has to reset to zero the three classical binary devices
sent by Bob and that generates an amount of entropy not
less than 3k ln 2, by Landauer’s principle. But, Alice has
eŒectively acquired only 1 bit of information corresponding
to k ln 2 of entropy. So why did she have to generate that
extra amount of entropy equal to 2k ln 2? Those extra 2
bits of information that she is erasing must have been
implicitly used to identify the errors and separate them
from the real message. In general, when Alice receives the
string of NC binary devices and she erases it, the minimum
amount of entropy that she generates is equal to NC ´k

ln 2. Now we can ®gure out how much of that entropy
needs to be wasted to extract the real message from these
(redundant) strings of binary digits. No matter how
sophisticated Bob’s coding was, there is no way that Alice
could isolate the errors without using at least NCH(q) bits
of information. In fact, even if she can compress the errors
in a block of digits and concentrate the message in the
remaining block she would still need at least NCH(q) binary
digits for the errors. Note that we are by no means proving
that she will be able to achieve this eçciency, but only that
she will compress the errors in a block of at least NCH(q)
binary letters. But, if Alice and Bob could devise such a
strategy, something much more sophisticated than the
naive idea suggested above, then they would really have
NC – NCH(q) bits available for error free communication.
That means that there is an upper bound on the
information capacity of any classical noisy channel given
by

N ˆ NC…1 ¡ H…q††, …16†

where N is the size of the message eŒectively transmitted,
NC is the size of the (larger) coded message and q is the
probability that each bit will ¯ip under the eŒect of the
noise. The rigorous proof that this bound is indeed
achievable was given by Shannon (see textbooks such as

[21]). The reader interested in more details can consult the
Feynman lectures on computation on which this short
treatment was based [18].

The problem of the noisy channel concludes our survey
of classical information encoded in classical systems. If you
have a look at the map of this paper you will see that we
have gone through one of the 4 columns of topics shown
pictorially in ®gure 1. The rest of this paper will deal with
topics that require a grasp of the basic principles and
mathematical methods of quantum mechanics. The next
section is a quick recap that should be of help to those with
a more limited background. If the reader feels con®dent in
the use of the basics of quantum mechanics, the density
operator and tensor products, then he can just skip this part
and move on to the next section.

3. A crash course on quantum mechanics

At the end of our discussion on the Maxwell’s demon
paradox, we started putting forward the idea that the
information we have on the state of a classical system
contributes to de®ne the state itself. In this section we will
push our arguments even further and investigate the role
that the concept of information plays in the basic
formalism of quantum mechanics.

3.1. To be or to know

The quantum state of a physical system is usually
represented mathematically by a vector jwi or a matrix q̂
in a complex vector space called the Hilbert space
[15 ± 17,19]. We will explain the rules and the reasoning
behind this representation in the next sections by consider-
ing two-level quantum systems as an easy example that
displays most of the features of the general case.

But, ®rst of all, what do the mathematical symbols exactly

represent? In this article, we take the pragmatic point of
view that what is being represented is not the quantum system

itself but rather the information that we have about its

preparation procedure. As an example that illustrates this
point, we consider the process by which an atom prepared
in an arbitrary superposition of energy eigenstates collapses
into only one of the eigenstates after the measurement is
done. This process seems to happen instantaneously unlike
the ordinary time evolution of quantum states. Generations
of physicists have been puzzled by this fact and have
searched for the physical mechanism which causes the
collapse of the wave function. However, if we consider the
wave function to represent only the information that we
possess about the state of the quantum system, we will
de®nitely expect it to change discontinuously after the
measurement has taken place, because our knowledge has
suddenly increased. Not everybody is satis®ed with this
view. Some people think that physical theories should deal
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with objective properties of Nature, with what is really out
there and avoid subjectivism. It is diçcult to assess the
validity of these arguments entirely on philosophical
grounds. To our knowledge there are no experiments that
provide compelling evidence in favour of any of the existing
interpretational frameworks. Therefore we will adopt what
we feel is the easiest way out of the problem and explain the
rules for representing mathematically our knowledge of the
preparation procedure of an arbitrary quantum state [25].

3.2. Pure states and complete knowledge

3.2.1. Pure states of a single system. We start by
considering how to proceed when we have complete
knowledge on the preparation procedure of a single
quantum system. In this simpler case, we say that the state
of the quantum system is pure and we represent our
complete knowledge of its preparation procedure as a
vector in a complex vector space. As an example, consider
two non-orthogona l states of a two-level atom jw1i and
jw0i. These states are arbitrary superpositions of the two

energy eigenstates. In the next few lines, we show how to
write them as two 2-dimensional vectors

jw1i ˆ 2

51/2
j0i ‡ 1

51/2
j1i .

ˆ 2

51/2
1

0
‡ 1

51 /2
0

1
.

ˆ
1

51/2
2

1
.

…17†

jw0i ˆ
1

21 /2
j0i ‡

1

21 /2
j1i .

ˆ
1

21 /2
1

1
.

…18†

The rule used above to convert from Dirac to matrix
notation is to write the energy eigenstates j0i and j1i, as the
column vectors

1
0

and
0
1

,

respectively. There is nothing mystical behind the choice of
this correspondence. One could have also chosen the basis
vectors

1

21 /2
1
1

and
1

21 /2
¡1
1

,

instead. What is important is that the two vectors are
orthogonal and normalized so that they can faithfully
represent the important experimental property that the
two states j0i and j1i are orthogonal and can be perfectly

distinguished in a measurement. The important point to
observe in the choice of the basis in which to represent
your state-vectors is that of consistency. Every physical
quantity has to be represented in the same basis when
you bring them together in computations. If one has used
diŒerent bases for representation, then one has to rotate
them into one standard basis using unitary transforma-
tions. This rotation can be expressed mathematically as
2 ´2 unitary matrix U. A unitary matrix is de®ned by the
requirement that UU≤ = U≤U = 1. Given a set of quantities
in one basis then upon rewriting them in another basis,
the predictions for all physically observable quantities
have to remain the same. This essentially requires that
the mathematical expressions that are used to express
these observable quantities have to be invariant under
unitary transformations. We will see examples of this
soon.

Above we have seen examples for orthogonal states
(namely the basis states j0i and j1i, as the column vectors

1
0

¡
and 0

1

¡
). In general two quantum states will be neither

orthogonal nor parallel such as for example the states jw0i
and jw1i. To quantify the angle between two vectors jwii
and jwji we introduce the complex scalar product. For
complex vectors with two components it is given by

hwjjwii ˆ …aj h0j ‡ bj h1j†…aij0i ‡ bij1i†

ˆ …aj bj †
ai

bi

ˆ aj ai ‡ bj bi . …19†

Note that the components of the ®rst vector have to be
complex conjugated, but apart from that the complex
scalar product behaves just as the ordinary real scalar
product. One nice property of the scalar product is the fact
that it is invariant under unitary transformations, just as
you would expect for a quantity that measures the angle
between two state vectors.

3.2.2. Operators and probabilitie s for a single system. In
our new language of state vectors, the dot product hwi jwji is
analogous to the overlap integral between two wave
functions wi (x) and wj (x), which is usually encountered in
introductory courses of quantum mechanics. The reader
may recall that the squared result of the overlap integral,
written as jhwi jwjij2, can be interpreted as the probability of
projecting the quantum state jwii on the eigenstate jwji of
an appropriate observable after the measurement is
performed.

Now we would like to represent this projection
mathematically by a projection operator denoted by jwihwj.
This projector is simply a matrix that maps all the vectors
onto the vector corresponding to jwji, apart from a
normalization constant. The recipe to construct the matrix
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representation of jwihwj is to multiply the column vector
jwi times the row vector hwj as shown below:

jwihwj ˆ …aj0i ‡ bj1†…a h0j ‡ b h1j†

ˆ
a

b

…a b †

ˆ jaj2 ab

a b jbj2

Á !

.
…20†

For example, the reader can easily construct the matrix
representing the projector j1ih1j and check that when it
operates on the state jw0i in equation (18) we indeed obtain
the excited state j1i apart from a normalization constant.
Furthermore, the probability of ®nding the state jwi in a
measurement of a system originally in the quantum state
jui is given by

Probjwi ˆ huj…jwihwj†jui ˆ tr fjwihwjjuihujg …21†

where tr denotes the trace which is the sum of the
diagonal elements of a matrix, a concept that is invariant
under unitary transformations . The reader can easily
check that equation (21) is true by explicitly constructing
the matrices jwihwj and juihuj (see equation (20)), multi-
plying them, take the trace, and verify that the result is
indeed equal to jhujwij2, calculated after squaring the
result of equation (19). Once this is done it is easy to write
the expectation value of any observable whose eigenvalues
are the real numbers {ei } and its eigenstates are the
vectors {jeii}. In fact, if we label the probability of
projecting on the eigenstate jeii as Probjeii and we make
use of equation (21), we can indeed write the expectation
value for any observable OÃ of the two level system in a
given state jui as

hÔijui ˆ e0Probje0i ‡ e1Probje1i .

ˆ e0 tr fje0ihe0jjuihujg ‡ e1 tr fje1ihe1jjuihujg .

ˆ tr f…e0je0ihe0j ‡ e1je1ihe1j†juihujg . …22†

The expression above can be tidied up a bit by de®ning the
observable OÃ as the matrix

Ô ˆ e0je0ihe0j ‡ e1je1ihe1j . …23†

Note that in order to use the projectors to calculate
probabilitie s as in equation (22), we have to demand that
the sum of the matrices representing the projectors must be
the unity matrix. For a two-dimensional vector space this
means that j0ih0j+ j1ih1j = 1. This condition ensures that
the sum of the probabilitie s obtained using equation (22) is
equal to 1. Once we check this important property of the
projectors we can use equation (23) to construct the matrix

representation of any observable. For example, the reader
can check that the energy observable EÃ can be written using
the basis

1
0

and
0
1

in the form:

Ê ˆ e0je0ihe0j ‡ e1je1ihe1j

ˆ e0

1 0

0 0
‡ e1

0 0

0 1

ˆ
e0 0

0 e1

.
…24†

Note that the energy operator is diagonal in this basis
because these basis vectors were originally chosen as the
energy eigenvectors! However, the prescription given in
equation (23) to represent any observable OÃ ensures that
the resulting matrix is Hermitian because the projectors
themselves are Hermitian. A matrix is said to be Hermitian
if all its entries that are symmetrical with respect to the
principal diagonal are complex conjugates of each other
(see equation (20)). The fact that the matrix OÃ is Hermitian
ensures that its eigenvectors are orthogonal and the
corresponding eigenvalues are real. This means that the
possible `output states’ after the measurement are distin-
guishable and the corresponding results are real numbers.
Once you accept equation (23), you can immediately write
equation (22) simply as

hÔi ˆ tr fÔjwiihwijg . …25†

This completes are quick survey of the rules to represent the
arbitrary state of a single two-level quantum system. The
main motivation to adopt these rules is dictated by their
ability to correctly predict experimental results.

3.2.3. Non-orthogonalit y and inaccessible information.

We would like to expand a little bit on the important
concept of non-distinguishibility between two quantum
states. By this we mean the following. Suppose that you
are given two two-level atoms in states jw0i and jw1i
respectively (see equations (18) and (17)) and you are asked
to work out which particle is in state jw1i and which in state
jw0i. The two states are said to be non-distinguishabl e if
you are never able to achieve this task without the
possibility of a wrong answer and if you are given only
one system and irrespective of the observable you measure.
For example you could decide to measure the energy of the
two atoms. After using equation (21) or just by inspection,
you can verify that the probability of ®nding the atom in
the excited state if it was in state jw0i before the
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measurement is equal to 1
5. On the other hand, you can also

check that the probability of ®nding the atom in the excited
state if it was in state jw1i before the measurement is also
non-vanishin g and in fact equal to 1

2
. Now, suppose that

you perform the measurement and you ®nd that the atom is
indeed in the excited state. At this point, you still cannot
unambiguously decide whether the atom had been prepared
in state jw0i or jw1i before the measurement took place. In
fact, by measuring any other observable only once you will

never be able to distinguish between two non-orthogona l

states with certainty.
This situation is somehow surprising because the two

non-orthogona l states are generated by diŒerent prepara-
tion procedures. Information was invested to prepare the
two states, but when we try to recover it with a single
measurement we fail. The information on the superposition
of states in which the system was prepared remains
inaccessible to us in a single measurement.

It is sometimes argued that we therefore have to assume
that a single quantum mechanical measurement does not
give us any information. This viewpoint is, however,
wrong. Consider the situation above again, where we either
have the state jw0i or the state jw1i with a priori

probabilitie s 1/2 each. If we ®nd in a measurement the
excited state of the atom, then it would be a fair guess to
say that it is more likely that the system was in state jw1i
because this states has the higher probability to yield the
excited state in a measurement of the energy. Therefore the
a posteriori probability distribution for the two states has
changed, and therefore we have gained knowledge as we
have reduced our uncertainty about the identity of the
quantum state.

The non-distinguishabilit y of non-orthogona l quantum
states is an important aspect of quantum mechanics and
will be encountered again several times in the remainder of
this article.

3.2.4. Two 2-level quantum systems in a joint pure state.

We have gained a good grasp of the properties of an
isolated two-level quantum system. We are now going to
study how the joint quantum state of two such systems (say
a pair of two-level atoms) is represented mathematically.
The generalization is straightforward. We initially concen-
trate on the situation where our knowledge of the
preparation procedure of the joint state is complete, i.e.,
when the joint system is in a pure state. The reader who is
not very familiar with quantum mechanics may wonder
why we have to include this section altogether. At the end
of the day, according to classical intuition, the state of a
joint quantum system comprised of two subsystems A and
B can be given by simply providing, at any time, the state of
each of the subsystems A and B independently . This
reasonable conclusion turns out to be wrong in many cases!
Let us see why.

We ®rst consider one of the most intuitive examples of the
joint state of the two atoms: the case in which atom A is in
its excited state j1iA and atom B in its ground state j0iB,
where the subscript labels the atoms and the binary number
their states. In this case, the joint state of the two atoms
jwABi can be fully described by stating the state of each atom
individuall y so we write jwABi down symbolically as
j1iAj0iB. We call this state a product state. We now decide
to represent the joint state j1iAj0iB of the two atoms as a
vector in an enlarged Hilbert space whose dimensionality is
no longer 2 as for a single atom but it is 2 ´2 = 4. The vector
representation of j1iAj0iB is constructed as shown below:

jwABi ˆ j1iAj0iB

ˆ
0

1

1

0

:ˆ

0 1

0 0

1 1

1 0

0

BBB@

1

CCCA

ˆ

0

0

1

0

0

BBB@

1

CCCA .

…26†

Equation (26) de®nes the so-called tensor product between
two vectors belonging to two diŒerent Hilbert spaces, one
used to represent the state of atom A and the other for
atom B. For the readers who have never seen the symbol
we write down a more general case involving the two
vectors jwAi with coeçcients a and b and jwBi with
coeçcients c and d:

jwABi ˆ jwAijwBi

ˆ
a

b

c

d

:ˆ

ac

ad

bc

bd

0

BBB@

1

CCCA .

…27†

The case of a tensor product between n-dimensional vectors
is a simple generalization of the rule of multiplying
component-wise as above [16]. Using equation (27) the
reader can work out the vector representation of the
following states:

j0iA j0iB¡!

1
0
0
0

0

BB@

1

CCA , …28†
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j0iA j1iB¡!

0
1
0
0

0

BB@

1

CCA , …29†

j1iA j1iB¡!

0
0
0
1

0

BB@

1

CCA . …30†

A trick to write the states above as vectors without
explicitly performing the calculation in equation (26) is
the following. First, read the two digits inside j. ..ij. ..i as
two digit binary numbers (for example read j0ij1i as 1), and
add 1 to get the resulting number n. Then place a 1 in the
nth entry of the column vector and 0’s in all the others. The
four state vectors in equations (26), (28), (29) and (30) are a
complete set of orthogonal basis vectors for our four-
dimensional Hilbert space. Therefore, any state jwABi of
the form jwBijwAi in equation (27) can be written as

jwABi ˆ acj0iAj0iB ‡ adj0iAj1iB ‡ bcj1iAj0iB ‡ bdj1iAj1iB ,

…31†

where we have written the vectors symbolically , in
Dirac notation, to save paper. We interpret the
coeçcients of each basis vector in terms of probability
amplitudes, as we did for single systems. For example,
the modulus squared jadj2 gives the probability of
®nding atom A in its ground state and atom B in the
excited state after an energy measurement. A question
that arises naturally after inspecting the equation above
is the following.

What happens when I choose the coeçcients of the

superposition in equation (31) in such a way that it is

impossible to ®nd two vectors jriA and jbiB that

`factorize’ the 4-dimensional vector jwABi as in equation
(27)? Are these non-factorizable vectors a valid mathe-

matical representation of quantum states that you can

actually prepare in the lab?

3.2.5. Bipartite entanglement. The answer to the pre-
vious question is a de®nite yes. Before expanding on this
point, let us write an example of a non-factorizable vector:

jwABi ˆ
1

21 /2
j0iA j0iB ‡

1

21/2
j1iAj1iB . …32†

The vector above corresponds to the state for which there is
equal probability of ®nding both atoms in the excited state
or both in the ground state. The reader can perhaps make a
few attempts to factorize this vector, but they are all going
to be unsuccessful. This vector, nonetheless, represents a

perfectly acceptable quantum state. In fact, according to
the laws of quantum mechanics, ANY vector in the
enlarged Hilbert space is a valid physical state for the joint
system of two atoms, independently of it being factorizable
or not. In fact, in section 5.2.2. we will show that for an n-
partite system most of the states are actually non-
factorizable. So these states are the norm rather than the
exception!

The existence of non-factorizable states is not too
diçcult to appreciate mathematically, but it leads to some
unexpected conceptual conclusions . If the quantum state of
a composite system cannot be factorized then it is
impossible to specify a pure state of its constituent
components. More strangely perhaps, non-factorizable
states, such as jwABi in equation (32) are pure states. This
means that the corresponding vectors are mathematical
representations of our complete knowledge of their
preparation procedure. There is nothing more we can in

principle know about these composite quantum objects
than what we have written down, but nonetheless we still
cannot have full knowledge of the state of their subsystems.
With reference to the discussion following equation (32), we
conclude that in a non-factorizable state we have knowl-
edge of the correlation between measurement outcomes on
atoms A and B but we cannot in principle identify a pure
state with each of the atoms A and B individually . This
phenomena seemed very weird to the fathers of quantum
mechanics who introduced the name entangled states to
denote states whose corresponding vectors cannot be
factorized in the sense explained above. In section 6, which
is entirely devoted to this topic, we will go beyond the dry
mathematical notion of non-factorizabilit y and start
exploring the physical properties that make entangled
states peculiar. We will focus on possible applications of
these weird quantum objects in the lab. But before doing
that, the reader will have to swallow another few pages of
de®nition and rules because we have not explained yet how
to construct and manipulate operators acting on our
enlarged Hilbert space.

3.2.6. Operators and probabilitie s for two systems. In this
section, we generalize the discussion of projection operators
and observables given previously for single quantum
systems to systems consisting of two particles. The
generalization to n-particle systems should then be obvious.
We start by asserting that the rules stated in equations (21)
and (23) for single quantum systems are still valid with the
only exception that now observables and projector
operators are represented by 4 ´4 matrices. Imagine that
you want to write down the joint observable OÃ

A OÃ
B,

where OÃ
A and OÃ

B are possibly diŒerent observables acting
respectively on the Hilbert space of particle A and of
particle B. The rule to write down the joint observable is the
following:
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ÔAB ˆ ÔA ÔB

ˆ
a1 b1

c1 d1

a2 b2

c2 d2

ˆ

a1a2 a1b2 b1a2 b1b2

a1c2 a1d2 b1c2 b1d2

c1a2 c1b2 d1a2 d1b2

c1c2 c1d2 d1c2 d1d2

0

BBB@

1

CCCA , …33†

where subscript 1 denotes the operator on particle A and
subscript 2 the operator on particle B. However, there are
some observables OÃ

AB whose corresponding matrices
cannot be factorized as in equation (33). These matrices
still represent acceptable observables provided that they are
Hermitian.

Furthermore, it is possible to construct projectors on any
4d vectors by using the same principle illustrated in
equation (20). For example, the projector on the entangled
state jwiAB in equation (32) can be written as

jwABihwAB j ˆ
1

2

1

0

0

1

0

BBB@

1

CCCA …1 0 0 1†

ˆ
1

2

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

0

BBB@

1

CCCA . …34†

Finally, suppose you are interested in knowing the
probabilit y of projecting atom A on its ground state j0iA

and atom B onto its excited state j1iB after performing a
measurement on the maximally correlated state jwABi
considered above. How do you proceed? The answer to
this question should be of guidance also for other cases, so
we work it out in some detail. The ®rst thing you do is to
construct the tensor product of the matrices corresponding
to the single particle projectors j0ih0j and j1ih1j that project
particle A onto its ground state and particle B on its excited
state:

j0ih0j j1ih1j ˆ
1 0

0 0

0 0

0 1

ˆ

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0

BBB@

1

CCCA . …35†

Once you have worked out the matrix in equation (35)
you can multiply it with the matrix found in equation (34)
and take the trace, as explained for single particles in
equation (21). The result is 0, as expected, since we have

maximal correlations between the two atoms in state
jwABi.

3.3. Mixed states and incomplete knowledge

3.3.1. Mixed states of a single two-level atom. In this
section, we explain how to represent mathematically the
state of a quantum system whose preparation procedure is
not completely known to us. This lack of knowledge may
be caused by random errors in the apparatus which
generates our quantum systems or by ¯uctuations induced
by the environment. In these cases we say that the quantum
system is in a mixed state. This can be contrasted with the
pure states considered in the previous sections for which
there was no lack of knowledge of the preparation
procedure (i.e. the quantum states were generated by a
perfect machine whose output was completely known to
us). To some extent, by considering mixed states, we start
dealing with `real world quantum mechanics’. We will build
on the example introduced in section 3.2.1 to make our
treatment more accessible.

An experimentalis t needs to prepare two-level atoms in
the state jw1i to be subsequently used in an experiment. He
has at his disposal an oven that generates atoms in the
state jw1i with probability p1 = 95% (see ®gure 7 for
illustration. In the remaining p0 = 5% of the cases the oven
fails and generates atoms in a diŒerent state jw0i. This
preparation procedure is pretty eçcient, but of course still
diŒerent from the ideal case. The experimentalis t collects
the atoms, but he does not know for which of them the

preparation has been successful because the experimental
errors occur randomly in the oven. Neither can he measure
the atoms because he is scared of perturbing their quantum
state. The only think he knows is the probability

distribution of the two possible states. The experimentalist
has to live with this uncertainty. However, he is aware that,
if he uses the states produced by the oven, his experimental
results are going to be diŒerent from the ones he would
have obtained had he used atoms in the state jw1i exactly,
because the oven occasionally outputs atoms in the
undesired state jw0i. He would like to ®nd an easy way

Figure 7. An oven emits atomic two-level systems. The internal

state of the system is randomly distributed. With probability pi

the system is in the pure state jwii. A person oblivious to this

random distribution measures observable AÃ. What is the mean

value that he obtains?
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to compute the measurement results in this situation so he
asks a theorist to help him model his experiments. The ®rst
task the two have to face is to construct a mathematical
object that represents their incomplete knowledge of the
preparation procedure. Intuitively, it cannot be the vector
jw1i because of that 5% probability of getting the state
jw0i. The way the two approach the problem is a good
example of empirical reasoning, so it is worth exploring
their thought process in some detail. The theorist asks the
experimentalist to describe what he needs to do with these
atoms and the two reach the conclusion that what really
matters to them are the expectation values of arbitrary
observables measured on the states generated by the oven.
The theorist points out that, after performing measure-
ments on N atoms, the experimentalist will have used,
approximately, Np1 atoms in the state jw1i and Np0 atoms
in state jw0i. for each of the two states jwii they would
know how to calculate the expectation value for any
observable AÃ that the experimentalis t wants to measure.
After using equation (23) the theorist rewrites the
expectation value of the observable AÃ on the state jwii as
tr {AÃjwiihwij}. The two are now only one step away from
the result. What they need to do is to average the two
expectation values for the states jw1i and jw0i with the
respective probabilities . The mean value observed by the
experimentalist is thus given by

hÂi ˆ
X

i

pi tr fÂjwiihwijg

ˆ tr fÂ
X

i

pijwiihwijg . …36†

The calculation above can be tidied up a bit by de®ning the
density operator q̂ as

q̂ ˆ
X

i

pijwiihwij . …37†

Once this is done equation (36) can be compactly written as

hÂi ˆ tr fÂq̂g . …38†

A glance at these few lines of mathematics convinces the
two physicists that they have actually solved their problem.
In fact the density operator is the mathematical description
of the knowledge the two have about the quantum states
prepared by the oven. Equation (38), on the other hand,
tells them exactly how to use their knowledge to compute
the expectation value of any operator.

Similarly, they can write down the probability of ®nding
the system in any state jri after a measurement by simply
constructing the projector jrihrj. After this, they just
multiply it with the density operator and take the trace (as
in equation (21))

Probjri ˆ tr fjrihrjq̂g . …39†

Equation (37) provides the recipe for constructing the
density matrix for the example above. We leave as an
exercise to the reader to show that the density operator
representing the preparation procedure described above
can be written as

q̂ ˆ 0.785 0.405
0.405 0.215

. …40†

One can see that the trace of the density operator q̂ in
equation (40) is equal to 1. This is not an accident but a
distinctive property of any density operator. You can easily
check this by plugging the unity matrix rather than the
operator OÃ into equation (38). The expectation value of the
unity operator on any normalized vector state is 1 (i.e. the
expectation value reduces to the dot product of the
normalized state vector with itself). That in turn implies
via equation (38) that the trace of OÃ is 1.

To sum up, one can use density operators in matrix form
to represent both states of complete and incomplete
knowledge (i.e. pure or mixed states). We saw, however,
that for pure states a vector representation is suçcient. If
one wants to use the same mathematical tool to write down
any state irrespective of the knowledge he holds on its
preparation procedure then the method of choice is the
density operator (also called density matrix). A system is in
a pure state when the corresponding density operator in
equation (37) contains only one term. In this ideal case,
there is no lack of knowledge on the preparation of the
system, the preparation implies that the diagonalized
density matrix representing a pure state has all entries
equal to zero except one entry equal to 1 on the principal
diagonal. Therefore, if you take the trace of the diagon-
alized density matrix squared, you will still get one.
Furthermore, the trace of the diagonalized density matrix
squared is equal to the trace of the original density matrix
squared (remember the trace is invariant under unitary
transformations). This observation is the basis of a
criterion to check whether a given density matrix represents
a pure or a mixed state. The test consists in taking the trace
of the density matrix squared. If the trace is equal to 1, then
the state is pure otherwise it is mixed. We recall that a
mixed state arises in the situation where the preparation
procedure is faulty and the result is a distribution of
diŒerent outputs each occurring with a given probability .

3.3.2. Mixed states for two quantum systems. Our treat-
ment of density operators for single quantum systems can
be applied to bipartite systems with no essential modi®ca-
tion. Let us consider an example in which an experimental
apparatus produces the maximally entangled state jwABi
(see equation (32)) with probability p0 and the product state
j0iAj0iB with probability p1 For both states we know how
to construct the corresponding projectors by using the same
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method illustrated in equation (34). But, before writing
down the resulting density operator, we introduce a small
simpli®cation in the notation used. We write the state
j0iAj0iB simply as j00iAB or simply j00i. The rule to write
down the four-dimensional vector corresponding to this
state and its interpretation does not change. The ®rst digit
still refers to atom A and the second to atom B. We can
now write the corresponding density operator q̂AB as shown
in equation (37)

q̂AB ˆ p0jwABihwAB j ‡ p1j00ih00j

ˆ p0

2

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

0

BBB@

1

CCCA ‡ p1

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

BBB@

1

CCCA

ˆ

p1 0 0 0

0 p0

2
p0

2 0

0 p0

2
p0

2 0

0 0 0 0

0

BBB@

1

CCCA . …41†

There is another situation that will arise in later sections.
Suppose that two distant machines are generating one atom
each, but we do not know exactly the preparation
procedure of each atom. Since the two machines are very
far away from each other, we can ignore the interaction
between the atoms and describe them separately in two
diŒerent 2-dimensional Hilbert spaces by writing down the
corresponding single particle density operators q̂A and q̂B.
All this is ®ne. But, we may also write the joint state of
these two non-interacting atoms as a density operator q̂AB

in our 4-dimensional Hilbert space, as we did for the case
considered in equation (41). How do we proceed? We
simply take the tensor product between the two 2 ´2
matrices corresponding to q̂A and q̂B to get

q̂AB ˆ q̂A q̂B . …42†

We leave as an exercise for the reader to choose two
arbitrary density operators q̂A and q̂B and perform an
explicit calculation of q̂AB.

Once we know how to write (1) the density matrix for the
joint state of the two atoms and (2) the matrix representing
a joint observable or projector we will have no trouble
®nding expectation values or probabilitie s of certain
measurement outcomes. All we need to do is to multiply
two 4 ´4 matrices and take the trace as illustrated for a
single particle in equations (38) and (39).

3.3.3. The reduced density operator. There is another
context in which a mixed state arises even when there is no
uncertainty in the preparation procedure of the quantum
system one is holding. Imagine you have an ideal machine
that generates with probability one, pairs of maximally

entangled particles in the state jwABi = 2– 1/2(j00i+ j11i).
The density operator qAB for this pure state reduces to the
corresponding projector, because all the probabilitie s
except one are vanishing, see discussion at the end of
section 3.3.1. In fact, the 4 ´4 density matrix for this
preparation procedure was explicitly calculated in equation
(34).

After having created the entangled pair we decided to
lock particle A in a room to which we have no access and
we give particle B to our friend Bob. Bob can do any
measurement he wants on particle B and he would like to
be able to predict the outcomes of any of these. Evidently
Bob does not know what is happening to particle A after it
has been locked away and as a consequence now he has an
incomplete knowledge of the total state. The question is
how we can describe mathematically his state given the
incomplete knowledge that Bob has of particle A. The ®rst
point to make is that Bob still has some background
knowledge on particle A because he retains information on
the original preparation procedure of the entangled pair.
For example, he knows that if Alice subjects her particle to
an energy measurement and ®nds that particle A is in the
ground (excited) state, then particle B has to be in the
ground (excited) state too. This prediction is possible
because the measurement outcomes of the two particles are
always correlated because they were prepared in the
entangled state jwABi Furthermore, Bob knows from the
preparation procedure, that the probability that Alice ®nds
her particle in either the ground state j0iA or in the excited
state j1iA is 1

2
. By using the non-local correlations between

his particle and the other, Bob concludes that particle B too
is in either the ground state j0iB or in the excited state j1iB

with probability 1
2. Now let us assume that Alice indeed has

measured the energy operator on her particle but, as she is
inside the box, has not told Bob that she did this.
Therefore, in half the cases Bob’s particle will be in state
j0ih0j and in half the cases it will be in state j1ih1j. This is a
situation that is most easily described by a density operator.
We ®nd that the state of Bob’s particle is described by the
reduced density operator q̂B given by

q̂B ˆ
1

2
j0ih0j ‡

1

2
j1ih1j

ˆ
1

2

1 0

0 1
,

…43†

where we used the rules for the representation and
manipulation of quantum states as vectors (equation
(20)). From the above reasoning it is perhaps not
surprising that q̂B is often termed the reduced density
operator. Being a mixed state, it represents Bob’s
incomplete information on the state of his particle (the
reduced system) due to his inabilit y to access particle A
while the total system is in a pure entangled state
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represented by the larger matrix q̂AB. In fact, Bob wrote
down q̂B after taking into account all information that
was available to him. It is important to note that we
would have obtained the same result for Bob’s density
operator if we had assumed any other operation on
Alice’s side. The key point is that, as Alice’s actions do
not aŒect Bob’s particle in any physically detectable way,
it should not make any diŒerence for Bob’s description
of his state which assumptions he makes for Alice’s
action.

The whole operation of ignoring Alice’s part of the
system and generating a reduced density operator only for
Bob’s system is sometimes written mathematically as

q̂A ˆ trBfq̂ABg . …44†

The mathematical operations that one has to perform on
the entries of the larger matrix q̂AB in order to obtain q̂A are
called the partial trace over system B. The general case can
be dealt with analogously to the reasoning above. One
assumes that in the inaccessible system a measurement is
carried out whose outcomes are not revealed to us. We then
determine the state of our system for any speci®c outcome
from the projection postulate and we use the associated
probabilitie s to form the appropriate density operator. We
refer the reader interested in learning how to deal with this
method in the most eçcient way to some recent courses of
quantum mechanics [15 ± 17].

This topic concludes our very concise review of quantum
mechanics. We will now extensively apply the mathema-
tical tools introduced in this section to deal with situations
in which classical information is encoded in a quantum
system and later to discuss the new ®eld of quantum
information theory. It is therefore essential that the reader
feels con®dent with what he has learned so far before
moving on.

4. Classical information encoded in quantum systems

4.1. How many bits can we encode in a quantum state?

In the previous section, we studied two situations in which
the state of a quantum system is mixed, namely when the
preparation procedure is not completely known or when
we have a subsystem that is part of a larger inaccessible
system. In both cases, our knowledge was limited to the
probabilitie s {pi} that the system is in one of the pure
states jwii. A question that arises naturally in this context
is whether we can assign an entropy to a quantum system
in a mixed state in very much the same way as we do with
a classical system that can be in a number of distinguish-
able con®gurations with a given set of probabilities . In the
classical case the answer is the well known Boltzmann
formula given in equation (13). At ®rst sight, you may

think that the same formula can be applied to evaluate the
mixed state entropy just by plugging in the probabilitie s
{pi} that the quantum system is in one of the pure
quantum states jwii. Unfortunately, this idea does not
work, because the quantum states jwii are diŒerent from
the distinguishabl e con®guration of a classical system in
one important way. They are not always perfectly
distinguishable ! As we pointed out earlier, two quantum
states can be non-orthogonal and therefore not perfectly
distinguishable . But maybe the idea of starting from the
classical case as a guide to solve our quantum problem is
not that bad after all.

In particular , imagine that you are given the density
matrix representing the mixed state of a quantum system.
Can you perform some mathematical operations on this
matrix to bring it in a form that is more suggestive? You
may recall from equations (20) and (37) that the procedure
to write down this density matrix is the following. First
construct the matrix representation of the projector jwiihwij
for each of the vectors jwii, then multiply each of them by
their respective probability and ®nally sum them all up in
one matrix. The reader can check that the prescription on
how to construct each matrix jwiihwij given in equation (20)
ensures that the resulting density matrix is Hermitian. We
denote the orthogonal eigenvectors of our (Hermitian)
density matrix by jeii. If we choose the jeii as basis vectors,
we can rewrite our matrix in a diagonal form. All the
entries on the diagonal are the real eigenvalues of the
matrix. These matrices can now be written in Dirac
notations as

q̂ ˆ
X

qijeiiheij , …45†

Where the qi are now the eigenvalues of the density matrix.
This new matrix actually represents another preparation
procedure, namely the mixed state of a quantum system
which can be in any of the orthogonal states jeii with
probability qi. But now the states jeii are distinguishable
and therefore one can apply the Boltzmann formula by
simply plugging the eigenvalues of the matrix as the
probabilities.

There is one problem in this reasoning. When you
rewrite the old density matrix in diagonal form you are
actually writing down a diŒerent matrix and therefore a
representation of a diŒerent preparation procedure. How
can you expect then that the entropy so found applies to the
mixed state you considered originally ? The answer to this
question lies in the fact that what matters in the matrix
representation of quantum mechanical observables or
states is not the actual matrix itself, but only those
properties of the matrix that are directly connected to
what you can observe in the lab. From the previous section,
we know that all the physically relevant properties are basis
independent . The diagonalizatio n procedure mentioned
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above is nothing more than a change of basis and therefore
there is no harm in reducing our original density matrix q̂ in
diagonal form and hence de®ne the von Neumann entropy
as the function

S…q̂† ˆ ¡tr fq̂ log q̂g
ˆ ¡

X
qi log qi .

…46†

The formula above is an example of how a function of a
matrix can be evaluated as an ordinary function of its
eigenvalues only. Since the eigenvalues are invariant under
a change of basis the function itself is invariant, as
expected. One can check the validity of the formula above
as an entropy measure by considering two limiting cases.
Consider ®rst a pure state, for which there is no uncertainty
on the output of the preparation procedure. The prob-
ability distribution reduces to only one probability which is
one. Therefore the density matrix representing this state has
an eigen value equal to one. If you plug the number one in
the logarithm in formula (46) you get the reassuring result
that the entropy of this state is zero. On the other hand, for
a maximally mixed state in which the system can be
prepared randomly in one of N equally likely pure states,
we ®nd that the entropy is log N in agreement (in
dimensionless units) with the Boltzmann and Shannon
entropies.

There is an interesting point to note. If we create a mixed
state by generating the states {jwii} with probabilitie s {pi}
we ®rst hold a list of numbers which tells us which system is
in which quantum state. In this classical list each letter
holds H({pi}) bits of information. if we want to complete
the creation of the mixed states, we have to erase this list
and, according to Landauer’s principle , will generate
kTH({pi}) of heat per erased message letter. In general
the Shannon entropy is larger than or equal to the von
Neumann entropy of the density operator

q̂ ˆ
P

i pijwiihwij . It is also clear that the same mixed state
can be created in many diŒerent ways and that the
information invested into the state will not be unique. It
seems therefore unclear whether we can ascribe a unique
classical information content to a mixed state. However,
the only quantity that is independent of the particular way
in which the mixed state has been generated is the von
Neumann entropy which is diŒerent from the amount of
information invested in the creation of the mixed state. In
fact, the von Neumann entropy S(q̂) is the smallest amount
of information that needs to be invested to create the mixed
state q̂. As we are unable to distinguish diŒerent prepara-
tions of the same density operator q̂ this is certainly the
minimum amount of classical information in the state q̂
that we can access. The question is whether we can access
even more classical information. The answer to this
question is NO, as we will see in the next section in which
we generalize Landauer’s principle to the quantum domain

to illuminate the situation further. The result of these
considerations is that there is a diŒerence between
information that went into a mixed state, and the accessible
information that is left after the preparation of the states
[19].

4.2. Erasing classical information from quantum states:

Landauer’s principle revisited

In the previous subsection we have discussed the amount of
classical information that goes into the creation of a mixed
state. But an obvious question has not been discussed yet:
how do you erase the classical information encoded in a
quantum mixed state? In section 2.3, we explained how to
erase one bit encoded in a partitioned box ®lled with a one-
molecule gas. All you have to do in this simple case is to
remove the partition and compress the gas on one side of
the box (say the right) independently of where it was before.
This procedure erases the classical state of the binary device
and the bit of information encoded in it. If the compression
is carried out reversibly and at constant temperature, then
the total change of thermodynamical entropy is given by k

ln 2, the minimum amount allowed by Landauer’s princi-
ple. In this sense the erasure is optimal. What we are
looking for in this section is a procedure for the erasure of
the state of quantum systems We will ®rst present a direct
generalization of the classical erasure procedure and then
follow this up with a more general procedure that applies
directly to both classical and quantum systems. These
results will then be used to show that the accessible
information in a quantum state q̂ created from an ensemble
of pure states is equal to S(q̂).

4.2.1. Erasure involving measurement. We know from
the previous section that the information content of a pure
state is zero. Therefore, all we need to do to erase the
information encoded in a mixed quantum state, is to return
the system to a ®xed pure state called the standard state.
We show how to achieve this in the context of an example.

Imagine you want to erase the information encoded in
quantum systems in the mixed state q ˆ

P
i pijeiiheij, where

the jeii are the energy eigenstates. You start by performing
measurements in the energy eigenbasis . After the measure-
ment is performed, each system will indeed be in one of the
pure states jeii and we have a classical record describing the
measurement outcomes. If the density operator represents
the preparation procedure of two-level atoms and we
measure their energies, the classical measurement record
would be a set of partitioned boxes storing a list of 0’s and
1’s labelling the energy of the ground state or the excited
state for each atom measured. Now we can apply a unitary
transformation and map the state jeii onto the standard
state je0i for each atom on which a measurement has been
performed (see ®rst step in ®gure 8).
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NaõÈvely, one could think that this completes the erasure,
because we have reset the quantum systems to a ®xed
standard state je0i. However this is not true, because we are
still holding the classical measurement records so the
erasure is still not complete. We need one more step,
namely to erase the classical measurement record using the
classical procedure discussed above. In the example of
®gure 8, this amounts to compressing each of the
partitioned boxes when the list of 0’s and 1’s were encoded.
This process will generate an amount of thermodynamical
entropy not less than k ln 2 per bit. In general we have that
k ln 2S(q̂) k ln 2H(p) as pointed out in the previous
section. The optimal erasure procedure, i.e. the one that
creates the least amount of heat, is the one where the
quantum measurements are made in the basis of the
eigenstates of q̂, so that the Shannon entropy equals the
von Neumann entropy as discussed in section 4.1.

To sum up, the protocol described above relies on a
quantum mechanical measurement followed by a unitary
transformation and the erasure of the classical measure-
ment record. While this protocol is a perfectly acceptable
erasure procedure, it consists of two conceptually diŒerent
steps and one may wonder whether there is a simpler
method that does not involve the explicit act of measuring
the quantum system.

4.2.2. Erasure by thermal randomization . Such an ele-
gant way to erase information, which was introduced by
Lubkin [26,27] , is by thermal randomization . Simply stated,
you have to place the quantum system that is to be erased
into contact with a heat bath at temperature T. The laws of
statistical mechanics teach us that when thermal equili-

brium is reached, there will be an uncertainty about the
energy state the system is in. The origin of this uncertainty
is classical because it is induced by thermal ¯uctuations.
This situation of lack of knowledge of the preparation
procedure for the quantum state is equivalent to the
example of the oven considered in section 3.3.1. The state
of the system can therefore be written as a density operator

Ãx given by

x̂ ˆ
exp…¡bĤ†

Z

ˆ
P

i exp…¡bEi †jeiiheij
Z

, …47†

where b = 1/kT, Ĥ is the Hamiltonian of the system whose
eigenstates and eigenvalues are jeii and Ei respectively. The
number Z is the partition function of the system and can be
calculated from Z = tr {exp ( –bĤ)}. For example, the
system can be in its ground state with probability p0 given
by the Boltzmann distribution:

p0 ˆ
exp…¡bE0 †

Z
. …48†

The exponential dependence of the probabilitie s in the
equation above implies that, if the system has a
suçciently large level spacing (i.e. E0 is much smaller
than the other energy levels), it will be almost surely in its
ground state. Thus, if a measurement is made, the result
will be almost certainly that the apparatus is in its ground
state. In other words, the mixed state q̂ can be made
arbitrarily close to a standard pure state je0i by greatly
reducing the presence of the other pure states jeii in the
thermal preparation procedure. In practice, this is exactly
what we wanted: a procedure that always resets our
system, originally in the mixed state q̂, to a standard state
(independent of the initial state), e.g. the ground state je0i.
Also note that this erasure procedure never requires any
measurement to be performed, so we do not need to be
concerned with erasing the classical measurement record,
as in the previous method.

Furthermore, we can readily calculate the net amount of
thermodynamical entropy generated in erasing the quan-
tum mixed state q̂ where the classical information is
encoded. We proceed by computing ®rst the change of
thermodynamical entropy in the system and then the
change of thermodynamical entropy of the environment.
All the steps in this derivation are reproduced and
motivated. The readers who do not feel comfortable with
the formalism of density operators explained in the
previous sections can skip this derivation and jump to the
result in equation (54).

The mixed state q̂ is generated by a source that produces
randomly pure states jeii with probability pi. Each quantum

Figure 8. Particles described by a quantum state q arrive and

are being measured in a basis jeii giving the outcome i with

probability pi. Given the outcome each of the particles can be

rotated into the pure state je0i. The remaining classical list has to

be erased as well. This generates kT ln 2H ({pi}) of heat. This

procedure can be optimized if one measures in the eigenbasis of q
in which case one generates kT ln 2S (q) heat.
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system in such a pure state jeii is brought into contact with
the heat bath and thermalizes into the state Ãx (see ®gure 9).
We remind the reader that the entropy of the system before
the thermalization procedure takes place is zero because the
system is in one of the pure states jeii (see equation (46) and
discussion below). Therefore, in each of these contacts, the
thermodynamical entropy of the system increases by the
same amount k ln 2S( Ãx), where S( Ãx) is the von Neumann
entropy times the conversion factor between information
and thermodynamical entropy, so that we have

DSsys ˆ k ln 2S…x̂† . …49†

Now we proceed to discuss the change in the thermo-
dynamical entropy of the heat bath. The latter is given in
terms of the heat lost by the heat bath and its temperature T
by the well known thermodynamical relation DSbath =
DQbath/T. The easiest way to attack this problem is by using
the observation that the change of heat in the heat bath
DQbath is equal and opposite to the change of heat in the
system DQsystem. The latter is given in terms of the heat lost
by the system and the temperature of the reservoir by the
well known thermodynamical relation TDSsystem = DQsystem.
Furthermore, the ®rst law of thermodynamics can be used
to write DQsystem as the change in the internal energy of the
system DUsystem = U®nal – Uinitial (i.e. the procedure can be
done reversibly so that the work required is arbitrarily close

to 0). One can summarize what is stated above in the
equation:

DSbath ˆ ¡
DUsystem

T
ˆ ¡

Ufinal ¡ Uinitial

T
. …50†

We can now rewrite the initial and ®nal energy of the system

as the expectation value of the Hamiltonian Ĥ of the system
calculated in the initial state q̂ and in the ®nal thermal state

Ãx. The formula to use is given in equation (38). Once this is
done equation (50) can be recast in the following form:

DSbath ˆ
tr fx̂Ĥg ¡ tr fq̂Ĥg

T

ˆ ¡
tr f…x̂ ¡ q̂†Ĥg

T
. …51†

The expression in equation (51) can be further elaborated by
substituting the operator Ĥ with the corresponding expres-
sion –kT ln (Z Ãx) obtained after solving the ®rst equation
(47) with respect to Ĥ.

DSbath ˆ k tr f…x̂ ¡ q̂† ln …Zx̂†g
ˆ k tr f…x̂ ¡ q̂† ln x̂g ‡ k ln Z tr f…x̂ ¡ q̂† ln x̂g .

…52†

In the previous steps we used the properties of the logarithm
and the fact that a constant like ln Z or kT can be `taken out
of the trace’. The last term in equation (52) vanishes because
tr{p}= tr{x}= 1 because the trace of a density operator is
always equal to 1. Also the ®rst term can be expanded as

DSbath ˆ k tr fx̂ ln x̂g ¡ k tr fq̂ ln x̂g
ˆ ¡k ln 2S…x̂† ¡ k tr fq̂ ln x̂g . …53†

Note the factor ln 2 to convert the logarithm from the
natural basis to the basis 2 adopted in the de®nition of the
von Neumann entropy. We therefore reach the ®nal result
that the total change of thermodynamical entropy in the
system and the environment in our procedure is given by

DStot ˆ DSsys ‡ DSbath ˆ ¡k tr fq̂ ln x̂g , …54†

where Ãx is the state of the system after having reached
thermal equilibrium with a heat bath at temperature T.

This entropy of erasure can be minimized by choosing
the temperature of the heat bath such that the thermal
equilibrium state of the system is q̂, i.e.

min fDStotg ˆ S…q̂† ˆ ¡tr fq̂ log q̂g , …55†

which equals the von Neumann entropy of q̂. Equation (55)
restates Landauer’s principle for quantum systems in which
classical information is encoded.

le1>

le2>

le3>

le4>

le5>

le6>

Figure 9. The quantum particles, described by the average state

q, are brought into contact with a thermal heat bath and are

allowed to relax into thermal equilibrium. The resulting change

of heat depends on the temperature of the heat bath and its

optimal value given by kT ln in 2S(q).
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From the last section we remember that the amount of
classical information invested in the creation of the state q̂
was never smaller than the von Neumann entropy S(q̂) a
value which can always be achieved. This left open the
question how much classical information is actually still
accessible after the creation of q̂. Having seen above, that
the entropy of erasure of a quantum state q̂ can be as small
as the von Neumann entropy, we conclude from Land-
auer’s principle that the accessible information in state q̂
cannot be larger than its von Neumann entropy. Therefore
it becomes clear that the only possible quantity to describe
the classical information content of a mixed state that has
been prepared from an ensemble of pure states is given by
the von Neumann entropy.

4.3. Classical information transmitted through a noisy

quantum channel

In this section we will evaluate how much classical
information can be transmitted reliably down a noisy

quantum channel. The reader may remember that we
considered the classical analogue of this problem in section
2.6.

Imagine that Alice wants to transmit a message to Bob.
This message is written in an alphabet composed of N

letters ai each occurring with probability pi. Alice decides to
encode each letter ai simply by sending a particle in the
state jwii. Alice can transmit the letter ai simply by sending
a particle in the state jwii via a physical channel, like an
optical ®bre. When Bob receives the particle, he does not
know which pure state it is in. Bob’s incomplete knowledge
of the state of the particle is represented by the mixed state

q̂ ˆ
P

pijwiihwij. When Bob reads the state of the particle
he will have gained some useful information to guess which
letter Alice had encoded. The information encoded in the
mixed state of the quantum carrier is equal to the von
Neumann entropy S(q} as explained in the last section. If
the states jwii are orthogonal, then the von Neumann
entropy reduces to the Shannon entropy of the probability
distribution {pi} because all the quantum states are
distinguishabl e and the situation is analogous to the
classical case. If the states are non-orthogona l then the
von Neumann entropy will be less than that for the
Shannon entropy. The information transfer is degraded by
the lack of complete distinguishabilit y between the pure
states of the carriers in which the information was encoded
at the source. This feature has no classical analogue and is
sometimes referred to as intrinsic quantum noise. The name
is also justi®ed by the fact that this noise is not induced by
the environment or any classical uncertainty about the
preparation procedure of the carriers’ states.

We now wonder what happens when the channel itself is
noisy (see ®gure 10). For example, the optical ®bre where
the carriers travel could be in an environment or an

eavesdropper, Eve, could be interacting with the carriers.
This extra noise is not intrinsic to the preparation of the
pure states at the source, but it is induced by the
environment. One can view the transmission through a
noisy channel in the following way.

Initially the sender, Alice, holds a long classical message.
She encodes letter i (which appears with probability pi) of
this message into a pure state which, during the transmis-
sion, is turned into a possibly mixed quantum state qi due
to the incomplete knowledge of the environment or of Eve’s
actions. These quantum states are then passed on to the
receiver, Bob, who then has the task to infer Alice’s
classical message from these quantum states. The upper
bound for the capacity for such a transmission, i.e. the
information I that Bob can obtain about Alice’s message
per sent quantum state, is known as the Holevo bound

I ˆ IH ˆ S…q†¡
X

i

piS…qi † . …56†

The rigorous proof of this result is rather complicated [28].
The aim of the next section is to justify Holevo’s bound
from the assumption of the validity of Landauer’s
principle.

4.3.1 Holevo’s bound from Landauer’s principle [40].
The idea behind the derivation of the Holevo bound from
Landauer’s principle is to determine an upper bound on the

Figure 10. The basics of information transmission. Alice

encodes the letters a, b, c, d (which can also be encoded in

binary as 00, 01, 10, 11) and encodes them in pure quantum

states jwi,ji. These states are sent through the channel where the

environment interacts with them. Here the information about the

second index is lost leading to mixed states q0 and q1. Bob

receives these mixed states and has lost some of the original

information as he cannot distinguish between a and b and

between c and d.
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entropy that is generated when Bob erases the information
which the message system carries in its state qi. In this way
we directly obtain an upper bound on the information
received by Bob, because we know from Landauer’s
principle that the information received is always less or
equal to the entropy generated when it is erased (see
equation (55)).

Let us begin by assuming that Alice uses an alphabet of
letters (i,a) that are enumerated by the two integers i and a.
We use this form of double indices to make formulation of
the following analysis simpler, but apart from that it has no
deeper meaning. The letter i appears with probability pi and
given i, a appears with the probability r i

a. Alice encodes her
message in the following way. Given she wants to send
letter (i,a) which occurs with probability pir

i
a, she encodes

it into the pure state ju i
ai. Therefore qi ˆ

P
a r i

aju i
aihu i

aj.
Now these quantum states are inserted into the quantum
channel and they are subjected to an interaction with the
environment or an eavesdropper Eve. The eŒect of this
interaction is that the systems lose their correlation to the
speci®c values of a or in other words, the information
about a is lost, and we are left with a certain degree of
correlation between the integers i and the mixed states qi.
Evidently the lost information about a has leaked into the
environment or to Eve and this information is not available
to Bob anymore. In the following we would like to
compute, using Landauer’s principle , how much informa-
tion has actually been lost. To this end we construct an
optimal erasure procedure and compute the thermodyna-
mical heat it generates.

4.3.2. Direct erasure. As explained above message letter
(i,a) which appears with probability pir

i
a is encoded in state

ju i
ai. We will now delete the information encoded in these

pure states by bringing them into contact with a heat bath.
We chose the temperature of this heat bath such that the
thermal equilibrium state of the message system is

q ˆ
P

i piqi. This ensures that the erasure is optimal, in
the sense that it produces the smallest possible amount of
heat. Following the analysis of Lubkin’s erasure in section
4.2, the entropy of erasure is given by

DS…2†
er ˆ ¡

X

i

pi tr fqi log qg ˆ S…q† . …57†

Note that all information has been deleted because now
every quantum system is in the same state q so that there is
no correlation between the original letter i and the encoded
quantum state left after the erasure!

4.3.3. Two-step erasure. Now let us compute the entropy
of erasure in going from the pure states ju i

ai into which
Alice encoded her message initially to the mixed states qi

that Bob obtains after the carriers have passed the channel.

This is the ®rst step in our erasure procedure and
determines the amount of information lost to the environ-
ment or the eavesdropper.

For a ®xed i which appears with probability pi, we place
the encoded pure states into contact with a heat bath. The
temperature T of the heat bath is chosen such that the
thermal equilibrium state of the message system is qi. Again
this choice ensures that the erasure is optimal. According to
our analysis of the Lubkin erasure in section 4.2, the
entropy of erasure is then found to be

DS…1†
er ˆ ¡

X

i

pi

X

a
tr fr i

ajui
aihui

aj log qig

ˆ ¡
X

i

pi tr fqi log qig

ˆ
X

i

piS…qi †.
…58†

After this ®rst step in the erasure procedure there is still
some information left in the physical systems as the letter i
of the classical message is correlated with the state qi of the
quantum system. Therefore some information is available
to Bob. In fact, this is exactly the situation in which Bob is
after he received a message which is encoded as in mixed
states qi. To obtain a bound on the information that Bob is
now holding, we need to ®nd a bound on the entropy of
erasure of his quantum systems.

Now we would like to determine the entropy of erasure
of the signal states qi that Bob has received through the
channel. In order to carry out this second step of the
erasure procedure we place each of Bob’s systems, which is
in one of the states qi with probability pi, into contact with
a heat bath such that the thermal equilibrium state of the
message system is q. As the average state of the systems is

q ˆ
P

i piqi, we expect the erasure to be optimal again. We
can see easily that this second step of erasure, just generates
an amount of entropy that is the diŒerence between the
entropy of erasure of the ®rst procedure and that of the ®rst
step of the second procedure. Therefore the entropy of
erasure of Bob’s systems which are in one of the states qi’s is

DSer…Bob† ˆ DS…2†
er ¡ DS…1†

er

ˆ S…q† ¡
X

i

piS…qi † .
…59†

As the largest possible amount of information available to
the receiver Bob is bounded by his entropy of erasure we
have

I DSer…Bob† ˆ S…q† ¡
X

i

piS…qi † ˆ IH . …60†

Therefore we have obtained the Holevo bound on the
information in the states qi which appear with probabilitie s
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pi. The Holevo bound completes our answer to the ®rst of
the three questions posed in the introduction. This is the
last result that we prove in this article about classical
information. We now turn our attention to the newly
developed subject of quantum information theory.

5. The basics of quantum information theory

The concept of quantum information represents a radical
departure from what we have encountered so far. In the
next few sections, we will explore some of its properties by
using Landauer’s erasure principle. But ®rst we want to
discuss why the term quantum information has been
introduced and what exactly it means.

5.1. Quantum information: motivation of the idea

The choice of the bit as the fundamental unit of
information is reasonable both logically and physically .
In fact, right from the outset, our de®nition of information
content of an object has focused on the fact that
information is always encoded in a physical system.
Classically, the simplest physical system in which informa-
tion can be encoded is a binary device like a switch that can
be either open (1) or closed (0). However, as technology
shrinks more and more, we need to abandon the macro-
scopic world in favour of devices that are suçciently small
to deserve the name of quantum hardware. To some extent,
the quantum analogue of a classical binary device is a two-
level quantum system like a spin-half particle. Just as the
classical device, it possesses two perfectly distinguishabl e
states (spin-up and spin-down) and as such it is the simplest
non-trivial quantum system. However, it diŒers in one
important way from the classical switch. The general state
jwi of a spin-half particle can be in an arbitrary super-
position of the state j≠iz corresponding to the spin of the
particle being oriented upwards, say in the positive z

direction, and of the state j īz corresponding to the spin
oriented downwards:

jwi ˆ aj#iz ‡ bj"iz , …61†

where a and b are two arbitrary complex numbers such that
jaj2+ jbj2 = 1. jaj2 (jbj2) are the probabilitie s for ®nding the
particle spin-up or spin-down in a measurement of the spin
along the z direction. By analogy with the classical bit, we
de®ne a qubit as the information encoded in this two-level
quantum system. An example will elucidate the motivation
behind this de®nition.

Imagine that you are holding a complex quantum system

and you want to send instructions to a friend of yours so
that he can reconstruct the state of the object with arbitrary
precision. We have previously mentioned that, if the
necessary instructions can be transmitted in the form of n

classical bits, then the classical information content of the

object is n bits. Sending n bits of classical information is not
diçcult. We just need to send a series of n switches and our
friend will read a 0 when the switch is closed and a 1 when it
is open. He will then process this information to recreate
the state of a complex quantum object like n interacting
spin-1

2 particles. All this is ®ne, but it entails a number of
problems. First the set of instructions may be very large
even if we only want to recreate a single qubit simply
because the complex amplitudes are real numbers. More
importantly though, we are somewhat inconsistent in trying
to reduce the state of a quantum system to classical binary
choices. It would be more logical to transmit the quantum
state of the composite object by sending `quantum building
blocks’. For example, we could try to send our instructions
directly in the form of simple two-level quantum systems
(qubits) rather than bits encoded in classical switches. The
hope is that, if we prepare the joint state of these qubits
appropriately , our friend will be able to manipulate them
somehow and ®nally reconstruct the state of the complex
quantum object. Schumacher [15,29] proved that this is
indeed possible and he also provided a prescription to
calculate the minimum number of qubits m that our friend
requires to reconstruct an arbitrary quantum state. The
existence of this procedure allows us to establish an analogy
with the classical case and say that the quantum informa-
tion content of the object is m qubits. In this sense, the
qubit is the basic unit of quantum information in very
much the same way as the bit is the unit of classical
information. We ask the reader to be patient and wait for
later sections, namely section 5.3, in which we will explain
in more detail Schumacher’s reasoning and expand on some
of the remarks made above. The previous arguments
should anyway convince the reader that, although the
ideas of qubit and bit have a common origin, it is worth
exploring the important diŒerences between the two.

5.2. The qubit

The key to understand the diŒerences between quantum
and classical information is the principle of superposition.
Our discussion below will be articulated in two points. we
®rst assess the implications of the superposition principle
for the state of a single spin-half particle (1 qubit) and then
we move to consider the case of a quantum system
composed of n spin-half particles (n qubits).

5.2.1. A single qubit. The concept of superposition of
states, which plays a crucial role in the de®nition of the
state of a spin-half particle, has no analogue in the
description of a classical switch which is either in one state
or in the other, but not in both! NaõÈvely, one could think
that the probabilisti c interpretation of the coeçcients a and
b in the superposition of states given by equation (61)
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solves all the problems. In fact, if jaj2 and jbj2 are the
probabilitie s for ®nding the particle spin-up or spin down
after the spin is measured along the z direction, then a qubit
is nothing more than a statistical bit. That is a random
variable, which can be either 0 or 1 with given probabilitie s
jaj2 or jbj2 respectively. This conclusion is wrong!

The probabilisti c interpretation of equation (61) given
above is not the full story on the qubit because it
concentrates only on the modulus squared of the complex
numbers a and b. This amounts to throwing away some
degrees of freedom which are contained in the imaginary
entries. We have shown before that the qubit is
mathematically described by a vector in a two-dimen-
sional complex vector space (the Hilbert space). This state
vector can be visualized as a unit-vector in a three-
dimensional space, i.e. pointing from the origin of the
coordinate system to the surface of a unit sphere, known
as the Bloch sphere [15,30] (see ®gure 11(b)). This can be
contrasted with a classical bit which is simply a discrete
variable that can take up either of the values 0 or 1. A
classical bit is thus shown in the same diagram as a
unitary vector along the z axis, pointing either up or down
(see ®gure 11(a)). This makes intuitive the idea that to
some extent there is `more room for information’ in a
qubit than in a bit. However, the ability of the qubit to
store more information in its `larger space’ is limited to
the processing of information. It is in fact impossible to
fully access this information (i.e. the whole of the
spherical surface) in a measurement. More explicitly,
whenever we manipulate a spin-up particle we do act on
all its degrees of freedom (i.e. we change both the
amplitude and the relative phase of the two complex
coeçcients a and b) so that the vector representing the
qubit can be rotated freely on any point on the surface of
the sphere. However, when we try to measure the state of
the system we have to choose a basis (i.e. a direction) in
which the spin measurement has to be done. That

amounts to ®xing a direction in space and asking only

whether the projection of the vector state in that direction
is oriented parallel or anti-parallel. In other words when
we try to extract information from the spin-half particle
we never recover a full qubit (i.e. the quantum state of the
system). We know from section 3.2.3 that it is impossible
to extract the complex coeçcients a and b with a single
measurement. In fact, the information one can extract
from the measurement is just one classical bit. It is
remarkable to note that there is a large fraction of
information in a qubit which can be processed but not
accessed in a measurement. Therefore, the diŒerence
between a single qubit and a classical bit is not merely
quantitative, as ®gure 11 suggests, but also qualitative.

5.2.2. n qubits. We have hopefully clari®ed what is
meant by a qubit. We will now expand on our knowledge
of quantum information by explaining what people mean
by having or transmitting n qubits. We already know that n
qubits is nothing more than a fancy way of saying n two-
level quantum systems. So the point is really to understand
the features displayed by the joint system of n two-level
quantum systems, possibly interacting with one another. In
section 3.2.5, we saw that, when you abandon the safe
territory of single particle quantum mechanics, you
immediately stumble over the remarkable phenomena of
quantum entanglement that make the quantum description
of a composite object very diŒerent from its classical
description. Please note that we are not contrasting
macroscopic objects obeying the laws of classical physics
(say three beams of light), with microscopic objects obeying
the laws of quantum mechanics (say three photons).
Instead, we are remarking that even if you choose
macroscopic objects, say three beams of light, and you
decide never to mention the word photon, you will still be
able to come out with states of the joint macroscopic
system that are entangled and therefore completely beyond
classical intuition. Let us be even more explicit. Imagine
that you have a classical physicist right in front of you and
you ask him the following question.

You: How many complex numbers do you need to
provide in order to specify the joint state of a system
comprised of three polarized beams of light?

The classical physicist will probably ®nd the expression
joint state rather peculiar, but he will still answer your
question on the basis of his knowledge of classical
electrodynamics.

Classical physicist: To completely describe the state of a
composite system (i.e. one composed of many subsystems)
you just need to specify the state of each subsystem
individually . So if you have n arbitrary polarized light
beams, you need 2n complex numbers to describe
completely the joint system, 2 complex parameters for each
of the n systems. In fact the state of each beam of light can

(b)(a)

Figure 11. The Bloch sphere representation of (a) a classical bit

in which the vector can only point up or down; (b) a qubit in

which the vector is allowed to point in any direction. This

illustrates that a qubit possesses more freedom than a classical

bit when information is processed.
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be described by a superposition of say horizontally and
vertically polarized components.

jhi ˆ AV exp …ihV †jVi ‡ AH exp …ihH † .jHi . …62†

What we mean is only to prepare a beam of light in a
superposition of horizontally and vertically polarized
components. Instructions given in this form should be
understandable by a classical physicist, too. Furthermore
the two complex coeçcients in equation (62) can be
interpreted as follows: AV and AH are the moduli of the
amplitude, corresponding to the ®eld strength, and hV and
hH are the phases of the vertically and horizontally
polarized components. An example is light that is polarized
at a 458 angle, which can also be viewed as an equally
weighted superposition of horizontally and vertically
polarized light with the same phase. The description of
three such beams of light will obviously require 2 ´3
complex parameters.

Unfortunately, statements that seem obvious sometimes
turn out to be wrong. The reader, who remembers our
discussion of entanglement in section 3.2.5, may see where
the problem with the argument above lies. In order to
describe an n-partite object quantum mechanically, you
need an enlarged Hilbert space spanned by 2n orthogonal
state vectors. For example the joint state of three beams of
light is an arbitrary superposition of the 23 orthogonal state
vectors, and therefore requires 8 complex coeçcients, not 6.
Why 8? Consider the state vector jHHVi representing the
state in which the ®rst and second beams are horizontally
polarized whereas the third is vertically polarized. Here we
used H and V, rather than 1 and 0 as in section 3.2.5, but
the logic is the same. How many of those vector states can
you superpose? Well, each of the three entries in j.. .i can be
either H or V so you have 2 ´2 ´2 possibilities . Therefore
any quantum state can be written as the superposition of
these 8 vectors in an 8-dimensional Hilbert space. However,
as we saw in section 3.2.5, not every vector can be
factorized in three 2-dimensional vectors each describing
a single beam of light. If he insists on using only 6
parameters to describe a tripartite system, the classical
physicist will ignore many valid physical states that are
entangled! You may wonder how big that loss is. In other
words, how much of the Hilbert space of a n-partite system,
is actually composed of entangled states. The answer is
pretty straightforward. Product states predicted by classical
thinking `live’ in a subspace of dimension 2 ´n, whereas the
dimension of the whole Hilbert space for the joint state of n

beams of light has 2n dimension. Formally stated, the phase
space of a quantum many body system scales exponentially
with the number of components if you allow for entangle-
ment among its parts. The classical product states instead
occupy only an exponentially small fraction of its Hilbert
space as shown in ®gure 12.

Going back to our starting point, we say that we are able
to hold and manipulate n qubits when we can prepare and
keep n beams of light, n two-level atoms or n spin-1

2 particles
in a joint state jwi given by any arbitrary superposition of
the 2n state vectors which can take the form

jwi ˆ
X1

i1, ...,inˆ0

ai1...in ji1 . .. ini …63†

with 2n complex amplitudes ai1. . .in
. The actual preparation

of such a state presents a tremendous experimental task no
matter which constituent subsystems you choose. You need
to carefully control and `engineer’ the interaction among all
the constituent components to choose the state you want
and at the same time you have to protect the joint state
against environmental noise. To date, this is possible with
only a few qubits and many people are skeptical about
radical improvements in the near future. The prospect of
implementing quantum computation, which requires the
manipulation of many qubits to be eŒective, seems far
beyond present capabilities .

5.3. The quantum information content of a quantum system

in qubits

We want to make up for the pessimistic tone that ended
the last section with the discussion of an interesting
feature of quantum information that might be useful in
case devices based on quantum information theory are
ever built. We will explain how an arbitrary quantum
state of a composite system comprised of n interacting 2-
level atoms, can be compressed and transmitted by
sending a number m < n of qubits. As advertised in
section 3, this procedure justi®es the use of the qubit as

Figure 12. Schematic picture of the whole Hilbert space,

including entangled states, and the smaller space comprising only

the disentangled states expected by a classical physicist.
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the unit of quantum information and by analogy with
classical data compression partly justi®es the otherwise
misleading name qubit. We proceed in close mathematical
analogy to the classical case studied in section 2.5 and see
how well we can compress quantum states, i.e. how many
qubits are needed to describe a quantum state. We ®rst
give a simple example, which illustrates the key ideas, and
then we reiterate these ideas in a slightly more general and
formal way.

5.3.1. Quantum data compression: a simple example. Let
us begin with the following very simple example, which is in
fact essentially classical, but displays all the relevant ideas
of the more general case. Consider a quantum source that
emits two-level systems with probability p0 = 0.95 in state
j0i and with probability p1 = 1– p0 = 0.05 in the orthogonal
state j1i. Our knowledge of this preparation procedure for
a single qubit is represented by the density operator q̂ given
by

q̂ ˆ 0.95j0ih0j ‡ 0.05j1ih1j , …64†

Note, that the two states generated by the oven have
been chosen to be orthogonal for simplicity. We will
consider the more general case later. For the time being,
let us consider blocks of 7 qubits generated by the source
described above. Clearly any sequence of qubits in states
j0i and j1i is possible, but some are more likely than
others. In fact, typically you will ®nd either a sequence
that contains only qubits in state j0i or sequences with a
single qubit in state j1i and all others in state j0i, as
shown below:

jw000i ˆ j0ij0ij0ij0ij0ij0ij0i ,

jw001i ˆ j0ij0ij0ij0ij0ij0ij1i ,

jw010i ˆ j0ij0ij0ij0ij0ij1ij0i ,

jw011i ˆ j0ij0ij0ij0ij1ij0ij0i ,

jw100i ˆ j0ij0ij0ij1ij0ij0ij0i ,

jw101i ˆ j0ij0ij1ij0ij0ij0ij0i ,

jw110i ˆ j0ij1ij0ij0ij0ij0ij0i ,

jw111i ˆ j1ij0ij0ij0ij0ij0ij0i .

…65†

The probability that you will get one of the above
sequences is plikely = (0.95)7+ 7(0.95)6(0.05) = 0.955. Of
course, these `typical’ states can be enumerated using just
three binary digits, i.e. 3 binary digits are suçcient to
enumerate 95.5% of all occurring sequences. This
procedure is analogous to labelling the typical sequences
of 0’s and 1’s shown in ®gure 6 except that we now
`enumerate’ the typical sequences with `quantum states’.
Now, let us see how we can use this fact quantum
mechanically. We de®ne a unitary transformation that has
the following eŒect:

Uj0ij0ij0ij0ij0ij0ij0i ˆ j0ij0ij0ij0ij0ij0ij0i ,

Uj0ij0ij0ij0ij0ij0ij1i ˆ j0ij0ij0ij0ij0ij0ij1i ,

Uj0ij0ij0ij0ij0ij1ij0i ˆ j0ij0ij0ij0ij0ij1ij0i ,

Uj0ij0ij0ij0ij1ij0ij0i ˆ j0ij0ij0ij0ij0ij1ij1i ,

Uj0ij0ij0ij1ij0ij0ij0i ˆ j0ij0ij0ij0ij1ij0ij0i ,

Uj0ij0ij1ij0ij0ij1ij0i ˆ j0ij0ij0ij0ij1ij0ij1i ,

Uj0ij1ij0ij0ij0ij1ij0i ˆ j0ij0ij0ij0ij1ij1ij0i ,

Uj1ij0ij0ij0ij0ij1ij0i ˆ j0ij0ij0ij0ij1ij1ij1i .

…66†

In this case the unitary transformation is a matrix that
maps a set of 8 orthogonal column vectors on another set
of 8 orthogonal vectors in a complex vector space of
dimension 27. The eŒect of this unitary transformation is to
compress the information about the typical sequences into
the last three qubits, while the ®rst four qubits are always in
the same pure state j0i and therefore do not carry any
information. However, when U acts on other, less likely,
sequences it will generate states that have some of the ®rst
four qubits in state j1i. Now comes the crucial step, we
throw away the ®rst four qubits and obtain a sequence of
three qubits:

j0ij0ij0ij0ij0ij0ij0i ! j0ij0ij0i ,

j0ij0ij0ij0ij0ij0ij1i ! j0ij0ij1i ,

j0ij0ij0ij0ij0ij1ij0i ! j0ij1ij0i ,

j0ij0ij0ij0ij0ij1ij1i ! j0ij1ij1i ,

j0ij0ij0ij0ij1ij0ij0i ! j1ij0ij0i ,

j0ij0ij0ij0ij1ij0ij1i ! j1ij0ij1i ,

j0ij0ij0ij0ij1ij1ij0i ! j1ij1ij0i ,

j0ij0ij0ij0ij1ij1ij1i ! j1ij1ij1i . …67†

Therefore we have compressed the 7 qubits into 3 qubits.
Of course we need to see whether this compression can
be undone again. This is indeed the case, when these
three qubits are passed on to some other person, this
person then adds four qubits all in the state j0i and then
applies the inverse unitary transformation U– 1 and
obtains the states in equation (66) back. This implies
that this person will reconstruct the correct quantum
state in at least 95.5% of the cases and he has achieved
this sending only 3 qubits. As we showed in the classical
case (see equation (12)), in the limit of very long blocks
composed of n qubits, our friend will be able to
reconstruct almost all quantum states by sending only
nH(0.95) = 0.2864n qubits. Note that this procedure also
works when we have a superposition of states. For
example, the state

jwi ˆ aj0ij0ij0ij0ij0ij0ij0i ‡ bj0ij0ij0ij0ij0ij0ij1i …68†

can be reconstructed perfectly if we just send the state of
three qubits given below:
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jwi ˆ aj0ij0ij0i ‡ bj0ij0ij1i . …69†

Therefore not only the states in equation (66) are
reconstructed perfectly, but also all superpositions of these
states.

A very similar procedure would work also when we have
a source that emits quantum states jwii with probabilitie s pi,
giving rise to an arbitrary density operator

q ˆ
P

i pijwiihwij. Unlike the example in equation (64),
the states jwii can be non-orthogonal states of a two-level
system so the resulting density matrix is not in diagonal
form. In this slightly more complicated case, the ®rst step
consists in ®nding the eigenvectors and eigenvalues of q. As
the eigenvectors to diŒerent eigenvalues are orthogonal , we
are then in the situation of equation (64). We can
immediately see that the number of qubits that need to be
sent, to ensure that the probabilit y with which we can
reconstruct the quantum state correctly is arbitrarily close
to unity, is given by n times the Shannon entropy of the
eigen values of q which is in turn equal to the von Neumann
entropy S(q). Since we can reconstruct the quantum state

q n of a system composed of n qubits by sending only nS(q)
qubits, we say that nS(q) is the quantum information
content of the composite system.

5.3.2. Quantum data compression via Landauer’s principle.

One may wonder whether the eçciency of quantum data
compression can be deduced from Landauer’s principle and
indeed this is possible. Given a source that generates jwii
with probabilitie s pi, and gives rise to a density operator

q ˆ
P

i pijwiihwij we know from section 4.2 that the entropy
of erasure per qubit is given by S(q)k ln 2. Now let us
assume that we could compress the quantum information
in state q̂ n to n (S(q̂)–≤) qubits where ≤ 0. The state of
each of these qubits will be the maximally mixed state

Ãx= 1
2
j0ih0j+ 1

2
j1ih1j because otherwise we could compress it

even further. We can then calculate the entropy of erasure
of the n (S(q)– ≤) qubits in state Ãx and ®nd of course
n (S(q)– ≤)S( Ãx)k ln 2 = n (S(q̂)– ≤)H( 1

2 )k ln 2 = n (S(q̂)–≤)k
ln 2. Therefore the total entropy of erasure would be given
by the total number of qubits times the entropy of erasure
for the qubits n (S(q̂)– ≤) ´k ln 2 which is less than nS(q̂)k
ln 2. This however, cannot be, because Landauer’s
principle dictates that the entropy of erasure cannot be
less than S (q) k ln 2 if the compressed states should hold
the same amount of information as the uncompressed
states. Therefore, we arrive at a contradiction which
demonstrates that the eçciency of quantum data compres-
sion is limited by the von Neumann entropy S(q), as
classical data compression is limited by the Shannon
entropy. This is the answer to the ®rst part of the second
searching question in section 1. We still need to ®nd out
whether this similarity between classical and quantum
information extends also to the act of copying information.

5.4. Quantum information cannot be copied

In this section, we use Landauer’s erasure principle to
argue that, unlike classical bits, qubits cannot be copied.
This result is often termed the no-cloning theorem. The
basis of our arguments is a reductio ad absurdum. We
show that if Bob can clone an unknown state sent to him
by Alice, then he can violate Landauer’s principle . The
logical steps of this argument are discussed below in the
context of an example.

(1) Alice starts by encoding letter 0 and 1, occurring
with equal probabilities , in the non-orthogona l
states jw0i and jw1i

0 7¡! jw0i ˆ j"i , …70†

1 7¡! jw1i ˆ
1

21 /2
j"i ‡

1

21 /2
j#i . …71†

We can ®nd the upper bound to the information
transmitted per letter by using Landauer’s principle.
As discussed in section 4.1, the minimum entropy of
erasure generated by thermalization of the carriers’
states is given by S (q), where q represent the
incomplete knowledge that we have of the state of
each carrier:

q ˆ 1

2
jw1ihw1j ‡ 1

2
jw0ihw0j . …72†

After working out the matrix corresponding to q̂
and plugging it in the formula (46) for the von
Neumann entropy, we ®nd that the entropy of
erasure and therefore the information is equal to
0.6008 bits. This is less than 1 bit because the two
states are non-orthogonal and the von Newmann
entropy is less that the Shannon entropy of the
probability distribution with which the states are
chosen, i.e. H ( 1

2 ) = log 2 = 1 bit.
(2) Alice sends the message states to Bob who has the

task of deciphering her message. Bob is also
informed of how Alice encoded her letters (but of
course he does not know the message!) and uses
this information in his guess. No matter how
clever Bob is, he will never recover more
information that what Alice encoded (i.e. more
than 0.6008 bits).

(3) Now let us assume that Bob owns a machine that
can clone an arbitrary unknown quantum state and
he uses it to clone an arbitrary number of times each
of the message states Alice sends to him.

(4) However, if Bob can clone the state of the
message system, then, upon receiving any of the
two states jw0i or jw1i he can create a copy. Since
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the probability of receiving each state is 1
2, Bob

will end up holding either two copies of the ®rst
jw0ijw0i or two copies of the second state jw1ijw1i.
We can compute the density operator that
describes this situation following the rules de-
scribed in section 3:

qtwocopies ˆ
1

2
jw0ijw0ihw0jhw0j ‡

1

2
jw1ijw1ihw1jhw1j .

…73†

The density operator qtw ocopies is represented as a
4 ´4 matrix. After ®nding the eigenvalues of this
matrix we can calculate its von Neumann entropy
S(qtwocopies). This is a measure of the classical
information that Bob has about the letter received
after cloning. We ®nd

S…qtwocopies † ˆ 0.8113 > 0.6008 . …74†

Therefore the information content of the state has
increased and if we would push this further and
create in®nitely many copies, then Bob would
perfectly distinguish between the two non-ortho-
gonal states and he could extract one bit of
information per letter-state received. This, how-
ever, is not possible as we cannot extract more
info than Alice has originally encoded.

The no-cloning theorem represents one of the most
striking diŒerences between classical and quantum infor-
mation. We therefore conclude this section on quantum
information by completing our answer to the second
question posed in the introduction. Quantum information
can be compressed in the sense described in section 5.3, but
it cannot be copied as we routinely do with classical
information.

6. Entanglement revisited

In the last section, we have always encountered the concept
of entanglement as one of the central themes in quantum
information theory. However, we never systematically
addressed the question of what physical properties make
entangled states peculiar and how they can be engineered
and exploited for practical purposes in the lab. We now
embark on this task. Our approach here will be based on
worked out examples. We have chosen the same approach
and numerical examples as in [17], so that the reader who
masters the topics presented here can easily jump to a more
comprehensive and mathematical treatment. Throughout
the following sections, we concentrate exclusively on
bipartite entanglement for which a suçcient understanding
has been reached.

6.1. The ebit

In section 3.2.5, we saw that any arbitrary superposition of
the basis vectors (j01i, j11i, j00i, j10i) represents the
physical state of a bipartite system. So this must be true
also for the vector jrABi given by

jrABi ˆ aj01i ‡ bj10i , …75†

where a and b are two arbitrary complex numbers such that
jaj2+ jbj2 = 1. We quickly remind the reader that, according
to the rules of quantum mechanics, jaj2 is the probability
for ®nding the ®rst system in j0i and the second in state j1i
after a measurement, whereas jbj2 is the probability of
®nding the ®rst system in state j1i and the second j0i. The
states of systems A and B are clearly anti-correlated. But
this is not the whole story.

We remind the reader that what is remarkable about
jrABi is that it is impossible to write it as a product state.
The state jrABi is represented by a vector in the enlarged
Hilbert space HAB that cannot be factorized as the tensor
product of two vectors in HA and HB. Therefore, we reach
the conclusion that jrABi does represent the state of a
bipartite system, but we cannot assign a de®nite state to its
constituent components. In fact, even the terminology
constituent components is a bit misleading in this context.
We emphasize that the systems A and B can be arbitrary far
from each other but nevertheless constitute a single system.
The entanglement of the bipartite state jrABi is then a
measure of the non-local correlations between the measure-
ment outcomes for system A and system B alone. These
correlations are the key to the famous Bell inequalitie s and
origin of much philosophica l and physical debate [31] and
more recently the basis for new technological applications
[1 ± 10].

A basic question that arises in this context is how much
entanglement is contained in an arbitrary quantum state? A
general answer to this question has not been found yet,
although quite a lot of progress has been made [7,32 ± 34].
In this article we con®ne ourselves to the simplest case of
bipartite entanglement for which an extensive literature
exists. As a ®rst step we de®ne the unit of entanglement for
a bipartite system as the amount of entanglement contained
in the maximally correlated state:

jrABi ˆ
1

21/2
j10i ‡

1

21 /2
j01i . …76†

We call this fundamental unit the ebit in analogy with
the qubit and the bit. Note that this state diŒers from the
maximally correlated state jwABi in equation (32), only
by a local unitary transformation and should therefore
contain the same amount of entanglement. The reason
behind the name ebit will be clear after reading section
6.4, where we explain how to turn any multipartite
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entangled systems into a group of m ebits plus some
completely disentangled (product) states, just by using
local operations and classical communication. There is
another reason, related to communication, for choosing
state equation (76) as the unit of entanglement. One can
show that the ebit is the minimal amount of entangle-
ment that allows the non-local transfer of one unit of
quantum information. Such a procedure is quantum
teleportation of one qubit of quantum information [7,9].
For our purposes this process can be compared to the
working of a hypothetical quantum fax machine (see
®gure 13). Alice, who is very far away from Bob can
transmit the unknown quantum state of a qubit to Bob
by using this device. In what follows, we regard the
quantum fax machine as a black box (®gure 13). We are
not interested in the internal mechanism of this device
nor in the procedures that Alice and Bob have to learn
to make it work. All we are interested in are the
resources that this machine exploits and of course the
result that it produces. It turns out that the only two
resources needed to send the unknown quantum state of
ONE qubit from Alice to Bob are:

(1) ONE maximally entangled pair of particles shared
between Alice and Bob (represented by a wiggled
line in ®gure 13). For example, Bob is holding
system B and Alice system A and the joint state is
jrABi in equation (76).

(2) TWO classical bits that Alice must send to Bob
through a classical channel like an ordinary phone
(represented by the telephone line in ®gure 13).

If these two resources are available Alice and Bob can
successfully transmit the unknown quantum state of a
qubit. The existence of such quantum fax machines
suggests that the sending of 1 qubit can be accomplished
by 1 ebit plus 2 classical bits.

There is an important diŒerence between the quantum
and classical fax machine. After Alice sends the qubit to
Bob the state of her qubit (the original copy of the quantum
message) gets destroyed. Only one qubit survives the
process and is in Bob’s hands. Incidentally the ebit that
acted as a sort of quantum channel during the commu-
nication is also destroyed. Those who were thinking of
buying a quantum fax machine and to use it also as a
quantum photocopier will be disappointed . The reason for
this is the no cloning theorem [35] discussed in section 5.4.
Furthermore if we could clone we would violate the law of
the non-increase of entanglement under local operations [7]
that we will explore in the next few sections.

6.2. Classical versus quantum correlations

In the last section we mentioned that bipartite entangle-
ment is a measure of quantum correlations between two
spatially separated parts. We now want to make clear what
is meant by quantum and classical correlations in the
context of an example.

Consider an apparatus that generates two beams of light
in the mixed state q̂AB given by

q̂AB ˆ
1

2
jHHihHHj ‡

1

2
jVVihVVj . …77†

The notation above represents our incomplete knowledge
of the preparation procedure, namely the fact that we know
that the two beams were prepared either both vertically
polarized or both horizontally polarized but we do not
know which of these two alternatives occurred. If we
perform a polarization measurement on these two beams
by placing the polarizer along the axis of vertical or
horizontal polarization we will ®nd half of the time the two
beams both polarized in the vertical direction and half of
the time in the horizontal direction. In this sense, the
measurement outcomes for the two beams are maximally

correlated. We say that mixed states like q̂AB are classically
correlated. The adjective classical is there not because the
systems considered are necessarily classical macroscopic
objects, but rather because the origin of this correlation can
be perfectly explained in terms of classical reasoning. It
simply arises from our lack of complete knowledge of the
preparation procedure.

If we represent the distinguishabl e single beam states jHi
and jVi as the orthogonal column vectors

1
0

and
0
1

,

respectively we can then write the state q̂AB in matrix form
following the guidance provided in equations (27), (34) and
(41)

Figure 13. A schematic picture of quantum state teleportation.

A qubit in an unknown quantum state is entered into a machine

which consumes one unit of entanglement (ebit) and a local

measurement whose four possible outcomes are transmitted to

the receiver. As a result the original state of the qubit is

destroyed at the senders location and appears at the receivers

end. The mathematical details can be found in [7,9].
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q̂AB ˆ
1

2

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0

BB@

1

CCA . …78†

We can now turn our attention to the maximally
entangled state jwABi = 2– 1/2jH H i+ 2– 1/2jV V i. When
the two beams are prepared in this pure state the outcomes
of a polarization measurement along the vertical and
horizontal directions are maximally correlated as in the
previous case. However, there is an important diŒerence
between the two. The maximally entangled state is a pure
state. That means there is nothing more that we can in
principle know about it than what we can deduce from its
wave function. So the origin of this correlation is not lack
of knowledge, because for a pure state we have complete
information on the preparation procedure. The state jwABi
can be represented mathematically using the same conven-
tional choice of basis vectors and following the same hints
as the density matrix:

jwABihwAB j ˆ
1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

0

BB@

1

CCA . …79†

A quick look at the entries of the matrix above shows
that q̂AB is indeed a diŒerent mathematical object than
jwABihwABj. But this mathematical diŒerence on paper
means nothing if we cannot interpret it physically. In other
words, how can you distinguish in the lab these two states
from each other, if they seem to have the same measure-
ment statistics? The answer is: turn the polarizer and
measure it again! Unfortunately, we cannot perform this
crucial experiment in front of the reader but we can try
to model it on paper and predict the results on the basis of
our knowledge of measurement theory as developed in
section 3.

For example imagine that you turn the polarizer by 458.
Now you have two new orthogonal directions that you can
label x and y. These new directions are analogous to the
directions of horizontal and vertical polarization consid-
ered before.

The new polarization states can be expressed in terms of
the old ones by using simple vector decomposition:

jX i ˆ 1

21 /2
jV i ‡ 1

21 /2
jH i , …80†

jY i ˆ
1

21 /2
jV i ¡

1

21 /2
jH i . …81†

It seems natural to ask the question: are the measurement
outcomes of the two beams still maximally correlated, i.e.

the beams are both found in either state jX i or state jY i? To
answer this question, we can check whether there is a non-
vanishing probability of ®nding one of the beams in state
jX i and the other in state jY i. To do that we have to ®rst
construct the column vectors representing jX i and jY i (see
equation (17)), then the single beam projectors jX ihX j and
jY ihY j (see equation (20)) and ®nally the joint projector P̂

given by jX ihX j jY ihY j (see equation (35)). We will not
deprive the reader from the pleasure of explicitly construct-
ing the 4 ´4 matrix representing P̂, a task well within reach
if one follows the hints given above. Once you have P̂, you
can calculate the probabilitie s of ®nding the two beams anti-
correlated in the new basis (i.e. when you measure with a
polarizer turned by p/2) for both the classically and quantum
correlated states (Prob q

anticorrelated and Prob w
anticorrelated †.

Note that turning the polarizer aŒects the measurement
not the preparation procedure of states q̂AB and jwABihwABj
which must be prepared exactly as before. By using equation
(21) we then ®nd:

Probq
anticorrelated ˆ tr fP̂q̂ABg ˆ 1

4
. …82†

Probw
anticorrelated ˆ tr fP̂jwABihwAB jg ˆ 0 . …83†

The results above demonstrate that the two states in
equations (77) and (79) possess diŒerent forms of correla-
tions which we revealed by going from the `standard’ basis
to a rotated basis. This trick is the basis for the formulation
of Bell inequalities [31] which show that a combination of
correlations measured along diŒerent rotated axes cannot
overcome a certain value when the state on which they are
measured is classically correlated. If we measure the same
set of correlations on a quantum mechanically entangled
state, then this limit can be exceeded and this has been
con®rmed in experiments.

6.3. How to create an entangled state?

Another way to gain an intuitive understanding of the
diŒerences between quantum and classical correlations
is to investigate the preparation procedures of states
jwABi and q̂AB. The latter can be generated by two
distant parties, Alice and Bob, who have a beam of
light each and are allowed only (1) local operations
on their own beam and (2) classical communication
via an ordinary phone. The entangled state instead
cannot be created unless Bob and Alice let their
beams interact. More explicitly, suppose that Alice and
Bob are both given each one beam of light and are
asked to create ®rst the mixed state q̂AB and then the
pure entangled state jwABi. What operations are they
going to do, if they start with the same resources in
the two cases?

M. B. Plenio and V. Vitelli54



Let us ®rst consider q̂AB. Alice who is in London
phones Bob who is in Boston and tells him to prepare
his beam horizontally polarized. That amounts to sending
one bit of classical information (i.e. either H or V). Then
she prepares her beam also horizontally polarized. After
completing this operation the two have constructed the
product state jHH i. Now they repeat the same procedure
many times and each time they store their beams in two
rooms (one in London and the other in Boston) clearly
labelled with the SAME number (for example, `experi-
ment 1’) and with an H to indicate that the beam is
horizontally polarized. After doing this for n times, they
perform an analogous procedure to create jVV i and they
®ll other n rooms carefully labelled with the same system,
but they write V rather than H, to indicate that they
store vertically polarized beams. Now, the two decide to
erase the letter H or V from each room but they keep the
labelling number. After the erasure, Alice and Bob have
an incomplete knowledge of the state of the two beams
contained in each pair of rooms labelled with the same
number. They know that the two beams are either in
state jHH i or jVV i but they do not know which. The
information the two hold on each of the pair of
correlated beams contained in rooms labelled with the
same number is correctly described by q̂AB. They have in
fact created an ensemble of a pair of beams in state q̂AB

by acting locally and just using phone calls. The example
above is a bit of a `theorist’s description of what is going
on in the lab’. The example captures the crucial fact that
classical correlations arise from (1) local manipulations of
the quantum states and (2) erasure of information that in
principle is available to some more knowledgeable

observers.
The situation is very diŒerent when Alice and Bob

want to create an entangled state and they start with two
completely disentangled product states like one beam in
Boston and another independent one in London. In this
situation, one of the two has to take the plane and bring
his or her beam to interact with the other. Only at that
point can entanglement be created. In fact, one of the
basic results of quantum information theory is that the

net amount of entanglement in a system cannot be

increased by using classical communication and local

operations only. So, if Alice and Bob start with no
entanglement at all, then they are forced to bring the two
beams together and let them interact in order to create
entanglement. We now would like to illustrate an
example of two beams that are initially in a disentangled
state and become entangled by interacting with each
other. Suppose that Alice and Bob hold a beam each
polarized at an angle p/4 (see equation (80)). The two
beams are initially far away from each other so they are
not interacting. The joint system can be described
mathematically by the product state jwABi(0) given below:

jwABi…0† ˆ
1

21 /2
jH iA ‡

1

21 /2
jV iA

1

21 /2
jH iB ‡

1

21 /2
jViB

ˆ
1

2

1

1

1

1

ˆ
1

2

1

1

1

1

0

BBB@

1

CCCA .

…84†

The two beams in the product state jwABi(0) are brought
together and they start interacting with each other. The
time evolution of the original state is determined by the
joint Hamiltonian of the system Ĥ that is represented
mathematically by a 4 ´4 hermitian matrix, because it has
to operate on vectors in the enlarged Hilbert space. Let us
pick up a Hamiltonian of this type, something easy so the
calculation does not get too complicated and let us see what
happens.

Ĥ ˆ

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ¡1

0

BB@

1

CCA . …85†

The basis vectors used to write the Hamiltonian Ĥ are
the same used to write jwABi(0) in equation (84). Since the
matrix in equation (85) is diagonal , we can read out the
eigenstates and eigenvalues of the Hamiltonian. They are
the state vectors jHH i, jHV i, jVH i and jVV i and the
corresponding eigenvalues are equal to 1, 1, 1 and –1.

We can now write down the time evolution of the state
jwABi(0) by solving the SchroÈdinger equation with the
Hamiltonian Ĥ:

i±h
≠wAB…t†

≠ t
ˆ ĤwAB…t†. …86†

The SchroÈdinger equation above is really a set of four linear
diŒerential equations one for each component of the four-
dimensional vector representing wAB(t). Usually, these four
diŒerential equations would be coupled by the Hamiltonian
so you would have to diagonaliz e the corresponding
matrix. In this case however the Hamiltonian is already
diagonal so we can readily write the solution of this set of
equations in vector form as

wAB…t† ˆ exp
¡i
±h

Ĥt wAB…0† . …87†

The exponential of the Hamiltonian exp [( – i/±h)Ĥt] is the
diagonal matrix whose eigenvalues are the exponential of
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the eigenvalues of the Hamiltonian’s matrix (see equation
(46) and discussion below). The reader can also check that
this time evolution matrix is unitary. After time t = p±h/2
(never mind the units) the matrix can be written as

exp
¡i
±h

Ĥt ˆ

exp ¡ip
2

¡
0 0 0

0 exp ¡ip
2

¡
0 0

0 0 exp ¡ip
2

¡
0

0 0 0 exp ‡ip
2

¡

0

BBBB@

1

CCCCA

ˆ

¡i 0 0 0

0 ¡i 0 0

0 0 ¡i 0

0 0 0 i

0

BBB@

1

CCCA . …88†

According to equation (87), you can now write down the
vector wAB(t) just by multiplying the unitary matrix in
equation (88) times the column vector wAB(0) given in
equation (84). The result is that after time p±h/2 the state
vector representing the system is

jwABi…t† ˆ ¡i

2

1
1
1

¡1

0

BB@

1

CCA . …89†

You can check by inspection that the state in equation
(89) is entangled (i.e. it cannot be factorized). The more
ambitious reader may consult [17] which explains in simple
terms the systematic criteria to check whether the state of a
bipartite system is entangled or not in the context of this
example.

Whatever way you choose to convince yourself that the
state above is entangled the conclusion is the same. States
that can be factorized arise mathematically only for very
special choices of the entries of the corresponding vectors.
Under Hamiltonian evolution the value of these entries will
change and in general it will not be possible to factorize the
state any more. The discussion above shows that the
process by which two independent systems in a product
state like jwABi(0) get entangled is indeed quite natural
provided that the two systems are brought together and left
to interact with each other. However, most interaction will
not lead to a maximally entangled state. It is therefore
important for applications like teleportation to devise
techniques by which one can distil a set of ebits from an
ensemble of partially entangled states like jwABi(t) in
equation (89). This is the subject of the next section.

6.4. Entanglement distillation

We emphasize that the fundamental law of quantum
information processing does not rule out the possibility to

occasionally increase the net amount of entanglement in a
system by using local operations and classical communica-
tion only, provided that on average the net amount of
entanglement is not increased. This implies that it should be
possible to devise strategies to turn a partially entangled
pair of particles into an ebit provided that this strategy
sometimes leads to an increase and other times to a loss of
entanglement so that on average the `entanglement balance’
stays the same. We ®rst consider a simple example of
entanglement distillation and then we look at the eçciency
of a general distillation procedure by using Landauer’s
principle.

6.4.1. A simple errand. Alice is still in London and Bob
in Boston. They share a non-maximally entangled pair of
particles in the state jwABi = aj00i+ bj11i, where afi b.
They want to turn it into an ebit but they are only allowed
to act locally on their own particle but not to let the two
interact. Furthermore, their communication must be
limited to classical bits sent over an ordinary channel,
nothing fancy like sending or teleporting quantum states is
allowed. The reason why we demand such tough conditions
on Bob and Alice and we insist on them not to freely meet
up is because we want to investigate the issue of locality
versus non-locality. This is really the main theme behind
our study of entanglement, so we have to be extra careful in
keeping track of what they do. That still leaves a lot of
room for manipulation on both Alice’s and Bob’s side. For
example the two can add other particles on their own side
and let them interact with the entangled particle they are
holding and perform measurements on them. We now
describe what operations the two perform in order to distill
one ebit [32,39,42] .

(1) Alice adds another particle in state j0Ai on her side.
Note that the subscript A denotes particles on
Alice’s side and B on Bob’s side. Now the joint state
of the entangled pair plus the extra particle is given
by the product state jwtoti given below:

jwtoti ˆ j0Ai …aj0Aij0Bi ‡ bj1Aij1Bi† . …90†

We can collect the states of the two particles on
Alice’s side in the same four-dimensional column
vector and rewrite equation (90) as

jwtoti ˆ aj00iA j0Bi ‡ bj01iA j1Bi . …91†

(2) Now Alice performs a unitary transformation Û on
her two particles. As we mentioned in the previous
section, a unitary transformation can be implemented
by letting the joint system evolve for a certain time as
dictated by a suitably chosen Hamiltonian (see
example in equation (88)). The unitary transforma-
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tion Û that Alice needs to implement on the joint state
of her two particles is given below in matrix form:

Û ˆ

b
a 0 ¡ …a2¡b2 †1 /2

a 0
0 1 0 0

…a2¡b2 †1/2

a 0 b
a 0

0 0 0 1

0

BB@

1

CCA . …92†

The reader can check that, when the unitary
transformation is applied on her states j00iA and
j01iA, Alice achieves the following:

Ûj00iA ˆ
b

a
j00iA ‡

…a2 ¡ b2 †1 /2

a
j10iA ;

Ûj01iA ˆ j01iA . …93†

Hence, when the unitary transformation Û is applied
to the joint state of the three particles jwtoti, the state
of the particle on Bob’s side is unaŒected whereas
the state of the two on Alice’s side is changed
according to equation (93):

Ûjwtoti ˆbj00iAj0Bi ‡ …a2 ¡ b2 †1 /2j10iAj0Bi
‡ bj01iAj1Bi .

…94†

We can split Alice’s vector states in equation (94)
and isolate the state of the entangled pair from the
state of the particle added on Alice’s side by writing
the latter ®rst in the equation below:

Ûjwtoti ˆ21 /2bj0Ai
j0Aij0Bi ‡ j1Aij1Bi

21/2

‡ …a2 ¡ b2 †1/2j1Aij0Aij0Bi . …95†

(3) Now, Alice decides to perform a measurement on
the extra particle she is holding on her side. She
chooses the observable that has j0i and j1i as its
eigenstates. There are two possible scenarios.
(a) Alice ®nds the extra particle in state j0i. Then

the total state is j0iA 2– 1/2(j0A0Bi+ j1A1Bi).
Alice and Bob share a maximally entangled
state. This event occurs with probability 2b2.

(b) Alice ®nds the extra particle in state j1i. Then
the total state is j1Ai j0A0Bi. The procedure
was unsuccessful and the two lost their initial
entanglement. This possibility occurs with prob-
ability 1–2b2.

(4) Alice phones Bob and informs him of the measure-
ment outcomes. If the procedure is successful Bob
holds his particle otherwise they try again.

A question that arises naturally in this context is the
following: what is the maximum number of ebits that Alice

and Bob can extract from a large ensemble of N non-
maximally entangled states? We will answer this question
by using Landauer’s erasure principle.

6.4.2. Eçciency of entanglement distillation from Land-

auer’s principle. We start by considering an example of a
process that will cause two systems to become entangled: a
quantum measurement. A quantum measurement is a
process by which the apparatus and the system interact
with each other so that correlations are created between the
states of the two. These correlations are a measure of the
information that an observer acquires on the state of the
system if he knows the state of the apparatus.

Consider an ensemble of systems S on which we want to
perform measurements using apparatus A. A general way
to write the state of S is

jwSi ˆ
1

N1 /2

XN

iˆ1

jsii , …96†

where {jsii} is an orthogonal basis. In our previous
example, the orthogonal basis was given by the vertically
and horizontally polarized states. When the apparatus is
brought into contact with the system the joint state of S

and A is given by

jwS‡Ai ˆ
1

N1/2

XN

iˆ1

jsiijaii . …97†

The result of the act of measurement is to create
correlations (i.e. entanglement) between the apparatus
and the system. The equation above is a generalization of
equation (76).

An observation is said to be imperfect when it is unable
to distinguish between two diŒerent outcomes of a
measurement. Let A be an imperfect measuring apparatus
so that {jaii} is not an orthogonal set. A consequence of the
non-orthogonalit y of the states jaii is that we are unable to
distinguish with certainty the correlated states jsii. There is
no maximal correlation between the state of the system and
the apparatus, which means that S and A are not
maximally entangled. However, suppose that by acting
locally on the apparatus we can transform the whole state
jwS+ Ai into the maximally entangled state jwS+ Ai:

juS‡Ai ˆ
1

N1 /2

XN

iˆ1

jsiijbii , …98†

where {jbii} is an orthogonal set. This does not increase
the information between the apparatus and the system
since we are not interacting with the system at all. In
order to assess the eçciency of this distillation procedure
we need to ®nd the probability with which we can distill
successfully.
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The state of the apparatus only, after the correlations are
created, is given by the reduced density operator ®rst
encountered in section 3.3.3:

trS …jwS‡AihwS‡Aj† ˆ qA . …99†

Laudauer’s principle states that to erase the information
contained in the apparatus we need to generate in the
environment an entropy of erasure larger than S(qA) and
this has to be greater than or equal to the information gain.
After we purify the state to juS+ Ai with a probability p, we
gain p log N bits of information about the system. In fact,
since we have maximal correlations now, the result of a
measurement enables us to distinguish between N equally
likely outputs. The rest of the state contains no information
because it is completely disentangled and therefore there
are no correlations between the states of the system and the
apparatus. After reading the state of the apparatus we will
not gain any useful knowledge on the state of the system.

By Landauer’s principle, the entropy of erasure is greater
than or equal to the information gain before puri®cation
and this is in turn greater than or equal to the information
the observer has after puri®cation, because the apparatus is
not interacting with the system so the information cannot
increase. We thus write

S…qA † p log N . …100†

The upper bound to puri®cation eçciency is therefore

p S…qA †/log N . …101†

This bound obtained from Landauer’s principle is
actually achievable as has been proven in [32] by construc-
tion of an explicit procedure that achieves it. It is
nevertheless satisfying that Landauer’s principle is able to
give a sharp upper bound with a minimal amount of
technicalitie s and by doing so it provides an informal
argument for using the von Neumann entropy as a measure
of bipartite entanglement. With this result we answer the
last of the three questions posed in the introduction that
have served as guidelines for our exploration of the physical
theory of information.

7. Conclusion

This is really the end of our long investigation on the
properties of entanglement, classical and quantum infor-
mation. We hope to have reasonably delivered what we
promised in the introduction. Throughout the paper, we
used the pedagogical technique of going backwards and
forward among diŒerent aspects of the subject, each time
increasing the level of sophistication of the ideas and
mathematical tools employed. This method has the

advantage of allowing enough time for `diŒerent layers of
knowledge to sediment in the mind of the reader’.
Unfortunately, there is also the inevitable side eŒect that
a proper understanding of the subject matter will only
follow when the reader goes through the material more
than once. For example, the understanding of the
diŒerences between quantum and classical information
crucially relies on the appreciation of the concepts of
classical and quantum correlations that were explicitly
studied only at the end of the article. No matter how hard
we tried to argue with words previously, a proper grasp of
these topics came only after employing more advanced
mathematical tools developed in later parts of the paper.

To prevent the reader from feeling lost, we will now
attempt to recap the content of the paper. In the ®rst part,
the scene was dominated by the Shannon entropy that
helped us to de®ne and evaluate the amount of classical
information encoded in a classical object or message. We
were also able to ®nd a bound on the classical information
capacity of a noisy classical channel by using Landauer’s
principle. The answer depended once again on the Shannon
entropy. Following a brief recap of quantum mechanics,
our interest slightly shifted to quantifying the amount of
classical information encoded in quantum systems. This
was achieved by introducing the von Neumann entropy.
After developing a suitable thermalization procedure to
erase information from quantum systems, we managed to
employ Landauer’s principle to justify the Holevo bound.
This bound expresses the classical information capacity of a
noisy quantum channel in terms of the von Neumann
entropy. That completed our investigation of classical
information.

We then turned our attention to quantifying the amount
of quantum information encoded in a quantum object or
message. This result, which is based on quantum data
compression, was obtained employing Landauer’s principle
and provided a solid basis for the introduction of the qubit as
the fundamental unit of quantum information. The answer
to this question was once again given by the von Neumann
entropy. Quantum information can be compressed, but
unlike classical information, it cannot be copied. This was
our conclusion after studying the no-cloning theorem with
the help of Landauer’s erasure principle.

Motivated by these successes we tried to shed light on the
phenomena of entanglement using Landauer’s principle.
We explained that creating a pair of entangled states is not
diçcult after all. Any two systems initially uncorrelated will
get entangled just by interacting with each other. However,
it is not equally easy to create quantum states that are
maximally entangled over a large distance. This problem
can be overcome by designing suitable distillation pro-
cedures by which maximally entangled states, ebits, are
produced from an ensemble of non-maximally entangled
states without increasing the total amount of entanglement.
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To some extent this procedure provides a way to measure
the amount of entanglement (in ebits) contained in a system
composed of only two parts. The eçciency of a distillation
procedure was once again expressed in terms of the von
Neumann entropy after carrying out a simple analysis
based on Landauer’s principle. The von Neumann entropy
in quantum information theory is so widespread to justify
the claim that the whole ®eld is really about its use and
interpretation, as classical information theory was based on
the Shannon entropy [15].

After reading this summary you might have noticed two
glaring omissions in our treatment. First, we spent a lot of
time discussing the classical information capacity of a noisy
classical and quantum channel, but we never mentioned the
more interesting problem of the quantum information
capacity of a noisy quantum channel. In other words how
many qubits can you send through a noisy channel when
the letters of your message are encoded in arbitrary
quantum states? Secondly, we never mentioned how to
generalize our discussion of entanglement measure to the
useful and interesting case of entangled states composed of
more than two particles.

We reassure the reader than these omissions are not
motivated by our compelling desire to meet the deadline for
submission of this paper, but rather by the fact that nobody
really knows the answer to these fundamental and natural
questions. We do not know whether one can push
Landauer’s principle to investigate these problems. Land-
auer’s principle is somehow limited to the erasure of
classical information whereas the questions above are
completely quantum. However, Landauer’s principle can
be used to yield upper bounds to entanglement distillation
of a completely non-classical procedure. Therefore the hope
that Landauer’s principle can shed some light on these
unsolved problems may not remain unful®lled.

Anyway, these ®nal remarks prove the point that,
although a large amount of work has been published since
Shannon, there is still room for further research in the
foundations of information theory. It is also evident that
this research belongs to fundamental physics as much as it
does to engineering. If you found some of the ideas in this
paper fascinating and you wish to start working in the ®eld,
you may want to start by studying some further intro-
ductory texts such as [15 ± 17,19,20] . Perhaps someday, we
will ®nd out the answer to the questions above from you.
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