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An introduction to entanglement measures.
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We review the theory of entanglement measures, concentrating mostly on the finite dimensional
two-party case. Topics covered include: single-copy and asymptotic entanglement manipulation; the
entanglement of formation; the entanglement cost; the distillable entanglement; the relative entropic
measures; the squashed entanglement; log-negativity; the robustness monotones; the greatest cross-
norm; uniqueness and extremality theorems. Infinite dimensional systems and multi-party settings
will be discussed briefly.

INTRODUCTION

The concept of entanglement has played a crucial role
in the development of quantum physics. In the early
days entanglement was mainly perceived as the quali-
tative feature of quantum theory that most strikingly
distinguishes it from our classical intuition. The subse-
quent development of Bell’s inequalities has made this
distinction quantitative, and therefore rendered the non-
local features of quantum theory accessible to experimen-
tal verification [1, 2, 3]. Bell’s inequalities may indeed
be viewed as an early attempt to quantify the quantum
correlations that are responsible for the counterintuitive
features of quantum mechanically entangled states. At
the time it was almost unimaginable that such quantum
correlations could be created in well controlled environ-
ments between distinct quantum systems. However, the
technological progress of the last few decades means that
we are now able to coherently prepare, manipulate, and
measure individual quantum systems, as well as create
controllable quantum correlations. In parallel with these
developments, quantum correlations have come to be rec-
ognized as a novel resource that may be used to perform
tasks that are either impossible or very inefficient in the
classical realm. These developments have provided the
seed for the development of modern quantum informa-
tion science.

Given the new found status of entanglement as a re-
source it is quite natural and important to discover the
mathematical structures underlying its theoretical de-
scription. We will see that such a description aims to
provide answers to three questions about entanglement,
namely (1) its characterisation, (2) its manipulation and,
(3) its quantification.

In the following we aim to provide a tutorial overview
summarizing results that have been obtained in connec-
tion with these three questions. We will place particular
emphasis on developments concerning the quantification

of entanglement, which is essentially the theory of en-

tanglement measures. We will discuss the motivation for
studying entanglement measures, and present their im-
plications for the study of quantum information science.

We present the basic principles underlying the theory and
main results including many useful entanglement mono-
tones and measures as well as explicit useful formulae.
We do not, however, present detailed technical deriva-
tions. The majority of our review will be concerned with
entanglement in bipartite systems with finite and infinite
dimensional constituents, for which the most complete
understanding has been obtained so far. The multi-party
setting will be discussed in less detail as our understand-
ing of this area is still far from satisfactory.

It is our hope that this work will give the reader a good
first impression of the subject, and will enable them to
tackle the extensive literature on this topic. We have
endeavoured to be as comprehensive as possible in both
covering known results and also in providing extensive
references. Of course, as in any such work, it is inevitable
that we will have made several oversights in this process,
and so we encourage the interested reader to study vari-
ous other interesting review articles (e.g. [4, 5, 6, 7, 8, 9])
and of course the original literature.

FOUNDATIONS

What is entanglement? – Any study of entangle-
ment measures must begin with a discussion of what en-
tanglement is, and how we actually use it. In the fol-
lowing we will adopt a highly operational point of view.
Then the usefulness of entanglement emerges because it
allows us to overcome a particular constraint that we will
call the LOCC constraint - a term that we will shortly
explain. This restriction has both technological and fun-
damental motivations, and arises naturally in many ex-
plicit physical settings involving quantum communica-
tion across a distance.

We will consider these motivations in some detail,
starting with the technological ones. In any quantum
communication experiment we would like to be able to
distribute quantum particles across distantly separated
laboratories. Perfect quantum communication is essen-
tially equivalent to perfect entanglement distribution. If
we can transport a qubit without any decoherence, then
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any entanglement shared by that qubit will also be dis-
tributed perfectly. Conversely, if we can distribute entan-
gled states perfectly then with a small amount of classical
communication we may use teleportation [10] to perfectly
transmit quantum states. However, in any forseeable ex-
periment involving these processes, the effects of noise
will inevitably impair our ability to send quantum states
over long distances.

One way of trying to overcome this problem is to dis-
tribute quantum states by using the noisy quantum chan-
nels that are available, but then to try and combat the ef-
fects of this noise using higher quality local quantum pro-
cesses in the distantly separated labs. Such local quan-
tum operations (‘LO’) will be much closer to ideal, as
they can be performed in well-controlled environments
without the decoherence induced by communication over
long-distances. However, there is no reason to make the
operations of separated labs totally independent. Clas-
sical communication (‘CC’) can essentially be performed
perfectly using standard telecom technologies, and so we
may also use such communication to coordinate the quan-
tum actions of the different labs (see fig. 1). It turns out
that the ability to perform classical communication is
vital for many quantum information protocols - a promi-
nent example being teleportation. These considerations
are the technological reasons for the key status of the
Local Operations and Classical Communication ‘LOCC’
paradigm, and are a major motivation for their study.
However, for the purposes of this article, the fundamen-

Classical Communication

(CC)

Alice Bob

Local Quantum Operations
(LO)

FIG. 1: In a standard quantum communication setting two
parties Alice and Bob may perform any generalized measure-
ment that is localized to their laboratory and communicate
classically. The brick wall indicates that no quantum particles
may be exchanged coherently between Alice and Bob. This
set of operations is generally referred to as LOCC.

tal motivations of the LOCC paradigm are perhaps more
important than these technological considerations. We
have loosely described entanglement as the quantum cor-

relations that can occur in many-party quantum states.
This leads to the question - how do we define quantum
correlations, and what differentiates them from classical

correlations? The distinction between ‘quantum’ effects
and ‘classical’ effects is frequently a cause of heated de-
bate. However, in the context of quantum information a
precise way to define classical correlations is via LOCC
operations. Classical correlations can be defined as those
that can be generated by LOCC operations. If we observe
a quantum system and find correlations that cannot be
simulated classically, then we usually attribute them to
quantum effects, and hence label them quantum corre-

lations [11]. So suppose that we have a noisy quantum
state, and we process it using LOCC operations. If in this
process we obtain a state that can be used for some task
that cannot be simulated by classical correlations, such
as violating a Bell inequality, then we must not attribute
these effects to the LOCC processing that we have per-
formed, but to quantum correlations that were already

present in the initial state, even if the initial state was
quite noisy. This is an extremely important point that is
at the heart of the study of entanglement.

It is the constraint to LOCC-operations that elevates
entanglement to the status of a resource. Using LOCC-
operations as the only other tool, the inherent quantum
correlations of entanglement are required to implement
general, and therefore nonlocal, quantum operations on
two or more parties [13, 14]. As LOCC-operations alone
are insufficient to achieve these transformations, we con-
clude that entanglement may be defined as the sort of
correlations that may not be created by LOCC alone.

Allowing classical communication in the set of LOCC
operations means that they are not completely local, and
can actually have quite a complicated structure. In order
to understand this structure more fully, we must first take
a closer look at the notion of general quantum operations
and their formal description.

Quantum Operations – In quantum information sci-
ence much use is made of so-called ‘generalised measure-
ments’ (see [10] for a more detailed account of the fol-
lowing basic principles). It should be emphasized that
such generalised measurements do not go beyond stan-
dard quantum mechanics. In the usual approach to quan-
tum evolution, a system is evolved according to unitary
operators, or through collapse caused by projective mea-
surements. However, one may consider a more general
setting where a system evolves through interactions with
other quantum particles in a sequence of three steps: (1)
first we first add ancilla particles, (2) then we perform
joint unitaries and measurements on both the system and
ancillae, and finally (3) we discard some particles on the
basis of the measurement outcomes. If the ancillae used
in this process are originally uncorrelated with the sys-
tem, then the evolution can be described by so-called
Kraus operators. If one retains total knowledge of the
outcomes obtained during any measurements, then the
state corresponding to measurement outcomes i occurs
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with probability pi = tr{AiρinAi
†} and is given by

ρi =
AiρinAi

†

tr{AiρinAi
†}

(1)

where ρin is the initial state and the Ai are matrices
known as Kraus operators (see part (a) of Fig. 2 for
illustration). The normalisation of probabilities implies
that Kraus operators must satisfy

∑

iAi
†Ai = 11. In

some situations, for example when a system is interact-
ing with an environment, all or part of the measurement
outcomes might not be accessible. In the most extreme
case this corresponds to the situation where the ancilla
particles are being traced out. Then the map is given by

σ =
∑

i

AiρinA
†
i (2)

which is illustrated in part (b) of Fig. (1). Such a map is

(a) (b)

ρ ρ
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FIG. 2: Schematic picture of the action of quantum opera-
tions with and without sub-selection (eqs. (1) and (2) respec-
tively) shown in part (a) and part (b) respectively.

often referred to as a trace preserving quantum operation,
whereas operations in which measurement outcomes are
retained are sometimes referred to as measuring quan-
tum operations (or sometimes also selective quantum op-
erations, or stochastic quantum operations, depending
upon the context). Conversely, it can be shown (see
e.g. [10]) that for any set of linear operators Ai sat-

isfying
∑

i A
†
iAi = 11 we can find a process, composed

of the addition of ancillae, joint unitary evolution, and
von-Neumann measurements, that leads to eq. (1). In
trace preserving operations the Ai should strictly all be
matrices of the same dimensions, however, if knowledge
of outcomes is retained, then different Ai may have dif-
ferent dimensions. Having summarized the basic ingre-
dients of generalised quantum operations, we are in a
position to consider approaches that may be taken to de-
termine which operations are implementable by LOCC.
The LOCC constraint is illustrated in figure 1. In gen-
eral this set of operations is quite complicated. Alice
and Bob may communicate classically before or after any
given round of local actions, and hence in any given round
their actions may depend upon the outcomes of previous
measuring operations. As a consequence of this com-
plexity, there is no known simple characterisation of the

LOCC operations. This has motivated the development
of larger classes of operations that can be more easily
characterised, while still retaining a considerable element
of LOCC-ality. One of the most important such classes is
the set of separable operations. These are the operations
that can be written in terms of Kraus operators with a
product decomposition:

ρk =
Ak ⊗BkρinA

†
k ⊗B†

k

trAk ⊗BkρinA
†
k ⊗B†

k

(3)

such that
∑

k A
†
kAk⊗B†

kBk = 11⊗11. Clearly, any LOCC
operation can be cast in the form of separable operation,
as the local Kraus operators corresponding to the individ-
ual actions of Alice and Bob can be joined into product
Kraus operators. However, it is remarkable that the con-
verse is not true. This was first demonstrated in [16],
where an example task of a separable operation is pre-
sented that cannot be implemented using LOCC actions
- the example presented there requires a finite amount of
quantum communication to implement it, even though
the operation is itself separable.

It is nevertheless convenient from a mathematical point
of view to work with separable operations, as optimising
a given task using separable operations provides strong
bounds on what may be achieved using LOCC. Some-
times this process can even lead to tight results - one
may try to show whether the optimal separable opera-
tion may in fact be also implemented using LOCC, and
this can often, but not always, be guaranteed in the pres-
ence of symmetries (see e.g. [15, 17] and refs. therein).
Even more general classes of operations such as positive
partial transpose preserving operations (PPT) [175] may
also be used in the study of entanglement as they have
the advantage of a very compact mathematical charac-
terization [17, 18, 19].

After this initial discussion of quantum operations and
the LOCC constraint we are now in a position to consider
in more detail the basic properties of entanglement.

Basic properties of entanglement – Following our
discussion of quantum operations and their natural con-
straint to local operations and classical communication,
we are now in a position to establish some basic facts and
definitions regarding entangled states. Given the wide
range of tasks that exploit entanglement one might try to
define entanglement as ‘that property which is exploited
in such protocols’. However, there is a whole range of
such tasks, with a whole range of possible measures of
success. This means that situations will almost certainly
arise where a state ρ1 is better than another state ρ2

for achieving one task, but for achieving a different task
ρ2 is better than ρ1. Consequently using a task-based
approach to quantifying entanglement will certainly not
lead to a single unified perspective. However, despite this
problem, it is possible to assert some general statements
which are valid regardless of what your favourite use of
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entanglement is, as long as the key set of ‘allowed’ oper-
ations is the LOCC class. This will serve us a guide as
to how to approach the quantification of entanglement,
and so we will discuss some of these statements in detail:

• Separable states contain no entanglement.

A state ρABC... of many parties A,B,C, ... is said to
be separable [20], if it can be written in the form

ρABC... =
∑

i

pi ρ
i
A ⊗ ρi

B ⊗ ρi
C ⊗ ... (4)

where pi is a probability distribution. These states can
trivially be created by LOCC - Alice samples from the
distribution pi, informs all other parties of the outcome
i, and then each party X locally creates ρi

X and discards
the information about the outcome i. As these states can
be created from scratch by LOCC they trivially satisfy
a local hidden variables model and all their correlations
can be described classically. Hence, it is quite reasonable
to state that separable states contain no entanglement.

• All non-separable states allow some tasks to be

achieved better than by LOCC alone, hence all non-

separable states are entangled.

For a long time the quantum information community
has used a ‘negative’ characterization of the term entan-
glement essentially defining entangled states as those that
cannot be created by LOCC alone. On the other hand,
it can be shown that a quantum state ρ may be gener-
ated perfectly using LOCC if and only if it is separable.
Of course this is a task that becomes trivially possible
by LOCC when the state ρ has been provided as a non-
local resource in the first place. More interestingly, it
has been shown recently that for any non-separable state
ρ, one can find another state σ whose teleportation fi-
delity may be enhanced if ρ is also present [21, 22, 23].
This is interesting as it allows us to positively character-
ize non-separable states as those possessing a useful re-
source that is not present in separable states. This hence
justifies the synonymous use of the terms non-separable

and entangled.

• The entanglement of states does not increase under

LOCC transformations.

Given that by LOCC we can only create separable, ie
non-entangled states, this immediately implies the state-
ment that LOCC cannot create entanglement from an
unentangled state. Indeed, we even have the following
stronger fact. Suppose that we know that a quantum
state ρ can be transformed with certainty to another
quantum state σ using LOCC operations. Then anything
that we can do with σ and LOCC operations we can also
achieve with ρ and LOCC operations. Hence the utility
of quantum states cannot increase under LOCC opera-
tions [4, 24, 25, 26], and one can rightfully state that ρ
is at least as entangled as σ.

• Entanglement does not change under Local Unitary

operations.

This property follows from the previous one because
local unitaries can be inverted by local unitaries. Hence,
by the non-increase of entanglement under LOCC, two
states related by local unitaries have an equal amount of
entanglement.

• There are maximally entangled states.

Now we have a notion of which states are entangled and
are also able, in some cases, to assert that one state is
more entangled than another. This naturally raises the
question whether there is a maximally entangled state,
i.e. one that is more entangled than all others. Indeed,
at least in two-party systems consisting of two fixed d-
dimensional sub-systems (sometimes called qudits), such
states exist. It turns out that any pure state that is local
unitarily equivalent to

|ψ+
d 〉 =

|0, 0〉 + |1, 1〉 + ..+ |d− 1, d− 1〉√
d

is maximally entangled. This is well justified, because as
we shall see in the next subsection, any pure or mixed
state of two d-dimensional systems can be prepared from
such states with certainty using only LOCC operations.
We shall later also see that the non-existence of an
equivalent statement in multi-particle systems is one of
the reasons for the difficulty in establishing a theory of
multi-particle entanglement.

The above considerations have given us the extremes
of entanglement - as long as we consider LOCC as our set
of available operations, separable states contain zero en-
tanglement, and we can identify certain states that have
maximal entanglement. They also suggest that we can
impose some form of ordering - we may say that state
ρ is more entangled than a state σ if we can perform
the transformation ρ → σ using LOCC operations. A
key question is whether this method of ordering gives a
partial or total order? To answer this question we must
try and find out when one quantum state may be trans-
formed to another using LOCC operations. Before we
move on to the discussion of entanglement measures we
will consider this question in more detail in the next part.

Note that the notion that ‘entanglement does not in-

crease under LOCC’ is implicitly related to our restric-
tion of quantum operations to LOCC operations - if other
restrictions apply, weaker or stronger, then our notion of
‘more entangled’ is likely to also change.

LOCAL MANIPULATION OF QUANTUM

STATES

Manipulation of single bi-partite states – In the
previous section we indicated that for bi-partite systems
there is a notion of maximally entangled states that is in-
dependent of the specific quantification of entanglement.
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This is so because there are so-called maximally entan-

gled states from which all others can be created by LOCC
only (at least for bipartite systems of fixed maximal di-
mension). We we will show this explicitly here for the
case of two qubits and leave the generalization as an ex-
ercise to the reader. In the case of two qubits, we will see
that the maximally entangled states are those that are
local-unitarily equivalent to the state

|ψ+
2 〉 =

1√
2
(|00〉 + |11〉) . (5)

Our aim is now to justify this statement by showing that
for any bipartite pure state written in a Schmidt decom-
posed form (see discussion around equation (10) for an
explanation of the Schmidt Decomposition):

|φ〉 = α|00〉 + β|11〉 (6)

we can find a LOCC map that takes |ψ+
2 〉 to |φ〉 with

certainty. To this end we simply need to write down the
Kraus operators (see eq. (1) of a valid quantum opera-
tion. It is easy to show that the Kraus operators defined
by

A0 := (α|0〉〈0| + β|1〉〈1|) ⊗ 11,

A1 := (β|1〉〈0| + α|0〉〈1|) ⊗ (|1〉〈0| + |0〉〈1|) (7)

satisfy A†
0A0 +A†

1A1 = 11⊗ 11 and Ai|ψ〉 = pi|φ〉, so that

|φ〉〈φ| = A0|ψ〉〈ψ|A†
0 + A1|ψ〉〈ψ|A†

1. It is instructive to
see how one can construct this operation physically using
only LOCC transformations. Let us first add an ancilla
in state |0〉 to Alice which results in the state

|00〉A|0〉B + |01〉A|1〉B√
2

. (8)

If we then perform the local unitary operation |00〉 →
α|00〉+ β|11〉; |01〉 → β|01〉+ α|10〉 on Alice’s two parti-
cles, we arrive at

|0〉A(α|00〉AB + β|11〉AB) + |1〉A(β|10〉AB + α|01〉AB)√
2

.

(9)
Finally, a local measurement on Alice’s ancilla particle
now yields two outcomes. If Alice finds |0〉 then Bob
is informed and does not need to carry out any further
operation; if Alice finds |1〉 then Bob needs to apply a σx

operation to his particle. In both cases this results in the
desired state α|00〉AB + β|11〉AB.

Given that we can obtain with certainty any arbitrary
pure state starting from |ψ+

2 〉, we can also obtain any
mixed state ρ. This is because any mixed state ρ can
always be written in terms of its eigenvectors as ρ =
∑

i pi|φi〉〈φi|, where each eigenvector is of the form |φi〉 =
Ui ⊗ Vi(αi|00〉 + βi|11〉) for some set of unitaries Ui and
Vi (this in turn is simply a consequence of the Schmidt

decomposition). It is an easy exercise, left to the reader,
to construct the operation that takes |ψ+

2 〉 to ρ.
A natural generalisation of this observation would be

to consider LOCC transformations between general pure
states of two parties [27]. Although this question is a lit-
tle more difficult, a complete solution has been developed
using the mathematical framework of the theory of ma-

jorization. The results that have been obtained not only
provide necessary and sufficient conditions for the pos-
sibility of the LOCC interconversion between two pure
states, they are also constructive as they lead to explicit
protocols that achieve the task [28, 29, 30, 31]. These
conditions may be expressed most naturally in terms of
the Schmidt coefficients [10] of the states involved. It is
a useful fact that any bi-partite pure quantum state |ψ〉
may be written in the form

|ψ〉 = UA ⊗ UB

N
∑

i=1

√
αi|i〉A|i〉B (10)

where the positive real numbers αi are the Schmidt-

coefficients of the state |ψ〉 [176]. The local unitaries
do not affect the entanglement properties, which is why
we now write the initial state vector |ψ1〉 and final state
vector |ψ2〉 in their Schmidt-bases,

|ψ1〉 =

n
∑

i=1

√
αi |iA〉 |iB〉 , |ψ2〉 =

n
∑

i=1

√

α′
i |i′A〉 |i′B〉

where n denotes the dimension of each of the quantum
systems. We can take the Schmidt coefficients to be
given in decreasing order, i.e., α1 ≥ α2 ≥ . . . ≥ αn and
α′

1 ≥ α′
2 ≥ . . . ≥ α′

n. The question of the intercon-
vertibility between the states can then be decided from
the knowledge of the real Schmidt coefficients only, as
any two pure states with the same Schmidt coefficients
may be interconverted straightforwardly by local unitary
operations. In [28] it has been shown that a LOCC trans-
formation converting |ψ1〉 to |ψ2〉 with unit probability
exists if and only if the {αi} are majorized by {α′

i}, i.e.
if for all 1 ≤ l < n we have that

l
∑

i=1

αi ≤
l

∑

i=1

α′
i (11)

and
∑n

i=1 αi =
∑n

i=1 α
′
i, where n denotes the number

of nonzero Schmidt-coefficients [32]. Various refinements
of this result have been found that provide the largest
success probabilities for the interconversion between two
states by LOCC, together with the optimal protocol (ac-
cording to certain figures of merit) where such a deter-
ministic interconversion is not possible [29, 30, 33]. These
results allow us in principle to decide any question con-
cerning the LOCC interconversion of pure states by em-
ploying techniques from linear programming [30].

It is a direct consequence of the above structures that
there are incomparable states, i.e. pairs of states such



6

that neither can be converted into the other with cer-
tainty. These states are called incomparable as nei-
ther can be viewed as more entangled than the other.
Note that borrowed entanglement can make some pairs
of incomparable states comparable again. Indeed, there
are known examples where the LOCC transformation of
|ψ〉 → |φ〉 is not possible with probability one, but where
given a suitable entangled state |η〉 the LOCC transfor-
mation of |ψ〉|η〉 → |φ〉|η〉 is possible with certainty [33].
This phenomenon is now called entanglement catalysis,
as the state |η〉 is returned unchanged after the trans-
formation, and acts much like a catalyst. The majoriza-
tion condition also reveals another disadvantageous fea-
ture of the single copy setting - there can be discontinu-

ities. For instance, it can be shown that the maximal
probability of success for the LOCC transformation from
(|00〉 + |11〉)/

√
2 to 0.8|00〉 + 0.6|11〉 is unity, while the

probability for the transformation (|00〉 + |11〉)/
√

2 to
(0.8|00〉+0.6|11〉+ ǫ|22〉)/

√
1 + ǫ2 is strictly zero for any

ǫ 6= 0, i.e. even if the target states in the two examples
are arbitrarily close. That the probability of success for
the later transformation is zero can also be concluded
easily from the fact that the Schmidt-number, i.e. the
number of non-vanishing Schmidt-coefficients, cannot be
increased in an LOCC protocol, even probabilistically.

The key problem is that we are being too restrictive
in asking for exact state transformations. Physically, we
should be perfectly happy if we can come very close to a
desired state. Indeed, admitting a small but finite value
of ǫ there will be a finite probability to achieve the trans-
formation. This removes the above discontinuity [34],
but the success probability will now depend on the size
of the imprecision that we allow. The following subsec-
tion will serve to overcome this problem for pure states
by presenting a natural definition of interconvertibility in
the presence of vanishing imprecisions, a definition that
will constitute our first entanglement measure.

State manipulation in the asymptotic limit –

The study of the LOCC transformation of pure states
has so far enabled us to justify the concept of maximally
entangled states and has also permitted us, in some cases,
to assert that one state is more entangled than another.
However, we know that exact LOCC transformations can
only induce a partial order on the set of quantum states.
The situation is even more complex for mixed states,
where even the question of when it is possible to LOCC
transform one state into another is a difficult problem
with no transparent solution at the time of writing.

All this means that if we want to give a definite answer
as to whether one state is more entangled than another
for any pair of states, it will be necessary to consider
a more general setting. In this context a very natural
way to compare and quantify entanglement is to study
LOCC transformations of states in the so called asymp-

totic regime. Instead of asking whether for a single pair
of particles the initial state ρ may be transformed to a fi-

nal state σ by LOCC operations, we may ask whether for
some large integers m,n we can implement the ‘whole-
sale’ transformation ρ⊗n → σ⊗m. The largest ratio
m/n for which one may achieve this would then indicate
the relative entanglement content of these two states.
Considering the many-copy setting allows each party to
perform collective operations on (their shares of) many
copies of the states in question. Such a many copy regime
provides many more degrees of freedom, and in fact paves
part of the way to a full classification of pure entangled
states. To pave the rest of the route we will also need to
discuss what kind of approximations we might admit for
the output of the transformations.

There are two basic approaches to this problem - we
can consider either exact or asymptotically exact transfor-
mations. The distinction between these two approaches
is important, as they lead to different scenarios that yield
different answers. In the exact regime we allow no errors
at all - we must determine whether the transformation
ρ⊗n → σ⊗m can be achieved perfectly and with 100%
success probability for a given value of m and n. The
supremum of all achievable rates r = m/n is denoted
by rexact(σ → ρ), and carries significance as a measure
of the exact LOCC ‘exchange rate’ between states ρ, σ.
This quantity may be explored and gives some interesting
results [19]. However, from a physical point of view one
may feel that the restriction to exact transformations is
too stringent. After all, it should be quite acceptable to
consider approximate transformations [24] that become
arbitrarily precise when going to the asymptotic limit.
Asymptotically vanishing imperfections, as quantified by
the trace norm (i.e. tr|σ − η|), will lead to vanishingly
small changes in measurements of bounded observables
on the output. This leads to the second approach to ap-
proximate state transformations, namely that of asymp-

totically exact state transformations, and this is the set-
ting that we will consider for the remainder of this work.
In this setting we consider imperfect transformations be-
tween large blocks of states, such that in the limit of
large block sizes the imperfections vanish. For example,
for a large number n of copies of ρ, one transforms ρ⊗n

to an output state σm that approximates σ⊗m very well
for some large m. If, in the limit of n→ ∞ and for fixed
r = m/n, the approximation of σ⊗m by σm becomes arbi-
trarily good, then the rate r is said to be achievable. One
can use the optimal (supremal) achievable rate rapprox as
a measure of the relative entanglement content of ρ, σ in
the asymptotic setting. This situation is reminiscent of
Shannon compression in classical information theory -
where the compression process loses all imperfections in
the limit of infinite block sizes as long as the compression
rate is below a threshold [35]. Clearly the asymptotically
exact regime is less strongly constrained than the exact
regime, so that rapprox ≥ rexact. Given that we are con-
sidering two limiting processes it is not clear whether the
two quantities are actually equal and it can be rigorously
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demonstrated that they are different in general, see e.g.
[19].

Such an asymptotic approach will alleviate some of the
problems that we encountered in the previous section. It
turns out that the asymptotic setting yields a unique to-
tal order on bi-partite pure states, and as a consequence,
leads to a very natural measure of entanglement that is
essentially unique. To this end let us start by defining our
first entanglement measure, which happens also to be one
of the most important measures - the entanglement cost,
EC(ρ). For a given state ρ this measure quantifies the
maximal possible rate r at which one can convert blocks
of 2-qubit maximally entangled states [36] into output
states that approximate many copies of ρ, such that the
approximations become vanishingly small in the limit of
large block sizes. If we denote a general trace preserving
LOCC operation by Ψ, and write Φ(K) for the density
operator corresponding to the maximally entangled state
vector in K dimensions, i.e. Φ(K) = |ψ+

K〉〈ψ+
K |, then the

entanglement cost may be defined as

EC(ρ) = inf
{

r : lim
n→∞

[

inf
Ψ
D(ρ⊗n,Ψ(Φ(2rn)))

]

= 0
}

where D(σ, η) is a suitable measure of distance [19, 37]. A
variety of possible distance measures may be considered.
It has been shown that the definition of entanglement
cost is independent of the choice of distance function, as
long as these functions are equivalent to the trace norm
in a way that is sufficiently independent of dimension (see
[38] for further explanation). Hence we will fix the trace
norm distance, i.e. D(σ, η) = tr|σ − η|, as our canonical
choice of distance function.

It may trouble the reader that in the definition of
EC(ρ) we have not actually taken input states that are
blocks of rn copies of 2-qubit maximally entangled states,
but instead have chosen as inputs single maximally en-
tangled states between subsystems of increasing dimen-
sions 2rn. However, these two approaches are equivalent
because (for integral rn) Φ(2rn) is local unitarily equiv-
alent to Φ(2)⊗rn.

The entanglement cost is an important measure be-
cause it quantifies a wholesale ‘exchange rate’ for con-
verting maximally entangled states to ρ by LOCC alone.
Maximally entangled states are in essence the ‘gold stan-
dard currency’ with which one would like to compare all
quantum states. Although computing EC(ρ) is extremely
difficult, we will later discuss its important implications
for the study of channel capacities, in particular via an-
other important and closely related entanglement mea-
sure known as the entanglement of formation, EF (ρ).

Just as EC(ρ) measures how many maximally entan-
gled states are required to create copies of ρ by LOCC
alone, we can ask about the reverse process: at what
rate may we obtain maximally entangled states (of two
qubits) from an input supply of states of the form ρ. This
process is known in the literature either as entanglement

distillation, or as entanglement concentration (usually re-
served for the pure state case). The efficiency with which
we can achieve this process defines another important ba-
sic asymptotic entanglement measure which is the Distil-

lable Entanglement, ED(ρ). Again we allow the output of
the procedure to approximate many copies of a maximally
entangled state, as the exact transformation from ρ⊗n to
even one pure maximally entangled state is in general
impossible [39]. In analogy to the definition of EC(ρ),
we can then make the precise mathematical definition of
ED(ρ) as

ED(ρ) := sup
{

r : lim
n→∞

[

inf
Ψ

tr|Ψ(ρ⊗n) − Φ(2rn)|
]

= 0
}

.

ED(ρ) is an important measure because if entanglement
is used in a two party quantum information protocol,
then it is usually required in the form of maximally en-
tangled states. So ED(ρ) tells us the rate at which noisy
mixed states may be converted back into the ‘gold stan-
dard’ singlet state by LOCC. In defining ED(ρ) we have
ignored a couple of important issues. Firstly, our LOCC
protocols are always taken to be trace preserving. How-
ever, one could conceivably allow probabilistic protocols
that have varying degrees of success depending upon var-
ious measurement outcomes. Fortunately, a thorough
analysis by Rains [40] shows that taking into account a
wide diversity of possible success measures still leads to
the same notion of distillable entanglement. Secondly, we
have always used 2-qubit maximally entangled states as
our ‘gold standard’. If we use other entangled pure states,
perhaps even on higher dimensional Hilbert spaces, do we
arrive at significantly altered definitions? We will very
shortly see that this is not the case so there is no loss of
generality in taking singlet states as our target.

Given these two entanglement measures it is natural to
ask whether EC

?
=ED, i.e. whether entanglement trans-

formations become reversible in the asymptotic limit.
This is indeed the case for pure state transformations
where ED(ρ) and EC(ρ) are identical and equal to the
entropy of entanglement [24]. The entropy of entangle-
ment for a pure state |ψ〉 is defined as

E(|ψ〉〈ψ|) := S(trA|ψ〉〈ψ|) = S(trB |ψ〉〈ψ|) (12)

where S denotes the von-Neumann entropy S(ρ) =
−tr[ρ log2 ρ], and trB denotes the partial trace over sub-
system B. This reversibility means that in the asymp-
totic regime we may immediately write down the opti-
mal rate of transformation between any two pure states
|ψ1〉 and |ψ2〉. Given a large number N of copies
of |ψ1〉〈ψ1|, we can first distill ≈ NE(|ψ1〉〈ψ1|) sin-
glet states and then create from those singlets M ≈
NE(|ψ1〉〈ψ1|)/E(|ψ2〉〈ψ2|) copies of |ψ2〉〈ψ2|. In the in-
finite limit these approximations become exact, and as
a consequence E(|ψ1〉〈ψ1|)/E(|ψ2〉〈ψ2|) is the optimal
asymptotic conversion rate from |ψ1〉〈ψ1| to |ψ2〉〈ψ2|. It
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is the reversibility of pure state transformations that en-
ables us to define ED(ρ) and EC(ρ) in terms of transfor-
mations to or from singlet states - the use of any other
entangled pure state (in any other dimensions) simply
leads to a constant factor multiplied in front of these
quantities.

Following these basic considerations we are now in
a position to formulate a more rigorous and axiomatic
approach to entanglement measures that captures the
lessons that have been learned in the previous sections.
In the final section we will then review several entangle-
ment measures, presenting useful formulae and results
and discuss the significance of these measures for various
topics in quantum information.

POSTULATES FOR AXIOMATIC

ENTANGLEMENT MEASURES

In the previous section we considered the quantifi-
cation of entanglement from the perspective of LOCC
transformations in the asymptotic limit. This approach
is interesting because it can be solved completely for pure
states. It demonstrates that LOCC entanglement manip-
ulation is reversible in this setting, therefore imposing a
unique order on pure entangled states via the entropy of
entanglement. However, for mixed states and LOCC op-
erations the situation is more complicated and reversibil-
ity is lost [41, 42].

The concomitant loss of a total ordering of quantum
states (in terms of rates of LOCC entanglement intercon-
versions) implies that in general an LOCC based classifi-
cation of entanglement would be extremely complicated.

However, one can try to salvage the situation by tak-
ing a more axiomatic approach. One can define real
valued functions that satisfy the basic properties of en-
tanglement that we outlined earlier, and use these func-
tions to attempt to quantify the amount of entanglement
in a given quantum state. This is essentially the pro-
cess that is followed in the definition of most entangle-
ment measures. Various such quantities have been pro-
posed over the years, such as the entanglement of distil-
lation [24, 40], the entanglement cost [24, 38, 43, 44, 45],
the relative entropy of entanglement [25, 26, 46] and
the squashed entanglement [47]. Some of these mea-
sures have direct physical significance, whereas others
are purely axiomatic. Initially these measures were used
to give a physically motivated classification of entan-
glement that is simple to understand, and can even be
used to assess the quality of entangled states produced
in experiments. However, subsequently they have also
been developed into powerful mathematical tools, with
great significance for open questions such as the additiv-
ity of quantum channel capacities [48, 49, 50], quanti-
fying quantum correlations in quantum-many-body sys-

tems [52, 53, 54, 55, 56], and bounding quantum com-
puting fault tolerance thresholds [57, 58] to name a few.

In this section we will now discuss and present a few
basic axioms that any measure of entanglement should
satisfy. This will allow us to define further quantities
that go beyond the two important mixed state measures
(EC(ρ) and D(ρ)) that we have already introduced.

So what exactly are the properties that a good entan-
glement measure should possess? An entanglement mea-
sure is a mathematical quantity that should capture the
essential features that we associate with entanglement,
and ideally should be related to some operational pro-
cedure. Depending upon your aims, this can lead to a
variety of possible desirable properties. The following is
a list of possible postulates for entanglement measures,
some of which are not satisfied by all proposed quantities
[26, 63]:

1. A bipartite entanglement measure E(ρ) is a map-
ping from density matrices into positive real num-
bers:

ρ→ E(ρ) ∈ R
+ (13)

defined for states of arbitrary bipartite systems. A
normalisation factor is also usually included such
that the maximally entangled state

|ψ+
d 〉 =

|0, 0〉 + |1, 1〉 + ..+ |d− 1, d− 1〉√
d

of two qudits has E(|ψ+
d 〉) = log d.

2. E(ρ) = 0 if the state ρ is separable.

3. E does not increase on average under LOCC, i.e.,

E(ρ) ≥
∑

i

piE(
AiρA

†
i

trAiρA
†
i

) (14)

where the Ai are the Kraus operators describing
some LOCC protocol and the probability of ob-
taining outcome i is given by pi = trAiρA

†
i (see

fig 2).

4. For pure state |ψ〉〈ψ| the measure reduces to the
entropy of entanglement

E(|ψ〉〈ψ|) = (S ◦ trB)(|ψ〉〈ψ|) . (15)

We will call any function E satisfying the first three con-
ditions an entanglement monotone. The term entangle-

ment measure will be used for any quantity that satisfies
axioms 1,2 and 4, and also does not increase under deter-

ministic LOCC transformations. In the literature these
terms are often used interchangeably. Note that the con-
ditions (1)-(4) may be replaced by an equivalent set of
slightly more abstract conditions which will be explained
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below eq. (20). Frequently, some authors also impose
additional requirements for entanglement measures:
• Convexity – One common example for an additional

property required from an entanglement measure is the
concept of convexity which means that we require

E(
∑

i

piρi) ≤
∑

i

piE(ρi).

Requiring this mathematically very convenient property
is sometimes justified as capturing the notion of the loss
of information, i.e. describing the process of going from a
selection of identifiable states ρi that appear with rates pi

to a mixture of these states of the form ρ =
∑

piρi. We
would like to stress, however, that some care has to be
taken in this context. Indeed, in the first situation, when
the states are locally identifiable, the whole ensemble can
be described by the quantum state

∑

i

pi|i〉M 〈i| ⊗ ρAB
i , (16)

where the {|i〉M} denote some orthonormal basis for a
particle belonging to one of the two parties. Clearly a
measurement of the marker particle M reveals the iden-
tity of the state of parties A and B. Losing the associa-
tion between |i〉M and state ρAB

i then correctly describes
the process of the forgetting, a process which is then de-
scribed by tracing out the marker particle M to obtain
ρ =

∑

piρi [64, 65]. As this is a local operation we may
then require that E(

∑

i pi|i〉M 〈i|⊗ρAB
i ) ≥ E(ρ), which is,

of course, already required by condition 3 above. Hence
there is no strict need to require convexity, except for
the mathematical simplicity that it might bring. A com-
pelling example of the technical simplicity that convexity
can bring is the very simple test for entanglement mono-
tonicity of a convex function f . Indeed, a convex function
f does not increase under LOCC if and only if it satisfies
(i) f(UA⊗UBρABU

†
A⊗U †

B) = f(ρAB) for all local unitary
UA, UB and (ii) f(

∑

i piρ
i
AB ⊗ |i〉〈i|X) =

∑

i pif(ρi
AB)

where X = A′, B′ and |i〉 form local, orthogonal bases
[66].
• Additivity – Given an entanglement measure and a

state σ one may ask for the condition E(σ⊗n) = nE(σ)
to be satisfied for all integer n. A measure satisfying
this property is said to be additive. Unfortunately, there
are some significant entanglement measures that do not
satisfy this condition, and for this reason we have not
included additivity as a basic postulate. However, given
any measure E that is not additive there is a straightfor-
ward way of removing this deficiency. We may define the
regularized, or asymptotic version:

E∞(σ) := lim
n→∞

E(σ⊗n)

n
(17)

which is a measure that then automatically satisfies ad-
ditivity.

A much stronger requirement could be to demand full

additivity, by which we mean that for any pair of states
σ and ρ we have E(σ⊗ ρ) = E(σ) +E(ρ). This is a very
strong requirement and in fact it may be too strong to be
satisfied by all quantities that otherwise satisfy the four
basic properties stated above. Indeed, even such basic
measures as the distillable entanglement may not satisfy
this property [67]. For these reason we have not included
the full additivity in our set of properties. However, ad-
ditivity can be a very useful mathematical property, and
we will discuss it further in the context of specific mea-
sures.
• Continuity – Conditions (1-3) listed above seem quite

natural - the first two conditions are little more than set-
ting the scale, and the third condition is a generalisa-
tion of the idea that entanglement can only decrease un-
der LOCC operations to incorporate probabilistic trans-
formations. The fourth condition appears considerably
stronger and perhaps arbitrary at first sight. However,
it turns out that it is also quite a natural condition to
impose. In fact we know that S(ρA) represents the re-
versible rate of conversion between pure states in the
asymptotic regime which strongly suggests that it is the
appropriate measure of entanglement for pure states.
This is reinforced by the following nontrivial observa-
tion: it turns out that any entanglement monotone that
is (a) additive on pure states, and (b) “sufficiently con-
tinuous” must equal S(ρA) on all pure states. Before we
see what sufficiently continuous means we present a very
rough argument for this statement. We know from the
asymptotic pure state distillation protocol that from n
copies of a pure state |φ〉 we can obtain a state ρn that
closely approximates the state |ψ−〉⊗nE(|φ〉) to within ǫ,
where E(|φ〉) is the entropy of entanglement of |φ〉. Sup-
pose therefore that we have an entanglement monotone
L that is additive on pure states. Then we may write

nL(|φ〉) = L(|φ〉⊗n) ≥ L(ρn) (18)

where the inequality is due to condition 3 for entan-
glement monotones. If the monotone L is “sufficiently
continuous”, then L(ρn) = L(|ψ−〉⊗nE(|φ〉)) + δ(ǫ) =
nE(|φ〉) + δ(ǫ), where δ(ǫ) will be small. Then we ob-
tain:

L(|φ〉) ≥ E(|φ〉) +
δ(ǫ)

n
. (19)

If the function L is sufficiently continuous as the dimen-
sion increases, i.e. δ(ǫ)/n → 0 when n → ∞, then
we obtain L(|φ〉) ≥ E(|φ〉). Invoking the fact that
the entanglement cost for pure states is also given by
the entropy of entanglement gives the reverse inequality
L(|φ〉) ≤ E(|φ〉) using similar arguments. Hence suffi-
ciently continuous monotones that are additive on pure
states will naturally satisfy L(|φ〉) = E(|φ〉). Of course
these arguments are not rigorous, as we have not un-
dertaken a detailed analysis of how δ or ǫ grow with n.
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A rigorous analysis is presented in [63], where it is also
shown that our assumptions may be slightly relaxed. The
result of this rigorous analysis is that a function is equiv-
alent to the entropy of entanglement on pure states if

and only if it is (a) normalised on the singlet state, (b)
additive on pure states, (c) non-increasing on determin-

istic pure state to pure state LOCC transformations, and
(d) asymptotically continuous on pure states. The term
asymptotically continuous is defined as the property

L(|φ〉n) − L(|ψ〉n)

1 + log(dimHn)
→ 0 (20)

whenever the trace norm tr||φ〉〈φ|n − |ψ〉〈ψ|n| between
two sequences of states |φ〉n, |ψ〉n on a sequence of Hilbert
spaces Hn ⊗ Hn tends to 0 as n → 0. It is interest-
ing to notice that these constraints only concern pure
state properties of L, and that they are necessary and

sufficient. As a consequence of the above discussion we
can conclude that we could have redefined the set of ax-
iomatic requirements (1)-(4), without changing the set
of admissible measures. We could have replaced axiom
(4) with two separate requirements of (4’a) additivity
on pure states and (4’b) asymptotic continuity on pure
states. Together with axiom (3) this would automati-
cally force any entanglement measure to coincide with
the entropy of entanglement on pure states.

It is furthermore interesting to note that the failure
of an entanglement measure to satisfy asymptotic conti-
nuity is strongly related to the counterintuitive effect of
lockability [68, 69, 70]. The basic question behind locka-
bility is: how much can entanglement of any bi- or mul-
tipartite system change when one qubit is discarded? A
measure of entanglement is said to be lockable if the re-
moval of a single qubit from a system can reduce the
entanglement by an arbitrarily large amount. This qubit
hence acts as a ‘key’ which once removed ‘locks’ the re-
maining entanglement. So which entanglement measures
are lockable? The remarkable answer is this effect can
occur for several entanglement measures, including the
Entanglement Cost. On the other hand another class
of measures that will be described later, Relative En-

tropies of Entanglement, are not lockable [69]. It can
also be proven that any measure that is convex and is
not asymptotically continuous is lockable [69].

Extremal Entanglement Measures– In the discussions
so far we have formulated several requirements on entan-
glement measures and suggested that various measures
exist that satisfy those criteria. It is now interesting to
bound the range of such entanglement measures. One
may in fact show that the entanglement cost EC(ρ) and
the distillable entanglement ED(ρ) are in some sense ex-

tremal measures [63, 71], in that they are upper and lower
bounds for many ‘wholesale’ entanglement measures. To
be precise, suppose that we have a quantity L(ρ) satisfy-
ing conditions (1) - (3) above, that is also asymptotically

continuous on mixed states, and also has a regularisation

lim
n→∞

L(ρ⊗n)

n
. (21)

Then it can be shown that

EC(ρ) ≥ lim
n→∞

L(ρ⊗n)

n
≥ ED(ρ). (22)

In fact the conditions under which this statement is true
are slightly more general than the ones that we have listed
- for more details see [63].

Entanglement Ordering The above considerations have
allowed us to impose quite a great deal of structure on
entangled states and the next section will make this even
more clear. It should be noted however that the axioms
1-4 as formulated above are not sufficient to give a unique

total ordering in terms of the entanglement of the set of
states. One can show that any two entanglement mea-
sures satisfying axiom 4 can only impose the same or-
dering on the set of entangled states if they are actually
exactly the same. More precisely, if for two measures
E1 and E2 and any pair of states σ1 and σ2 we have
that E1(σ1) ≥ E1(σ2) implies E2(σ1) ≥ E2(σ2), then if
both measures satisfy axiom 4 it must be the case that
E1 ≡ E2 [72] (see [73, 74, 75] for ordering results for other
entanglement quantities). Given that the entanglement
cost and the distillable entanglement are strictly different
on all entangled mixed states [76] this implies that there
is not a unique order, in terms of entanglement, on the
set of entangled states.

This suggests one of several viewpoints. We may for
example have neglected to take account of the resources
in entanglement manipulation with sufficient care, and
doing so might lead to the notion of a unique total order
and therefore a unique entanglement measure [77]. Al-
ternatively, it may be possible that the setting of LOCC
operations is too restrictive, and a unique total order
and entanglement measure might emerge when consider-
ing more general sets of operations [19]. Both approaches
have received some attention but neither has succeeded
completely at the time of writing this article.

In the following we will simply accept the non-
uniqueness of entanglement measures as an expression
of the fact that they correspond to different operational
tasks under which different forms of entanglement may
have different degrees of usefulness.

A SURVEY OF ENTANGLEMENT MEASURES

In this section we discuss a variety of bipartite entan-
glement measures and monotones that have been pro-
posed in the literature. All the following quantities
are entanglement monotones, in that they cannot in-
crease under LOCC. Hence when they can be calculated
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they can be used to determine whether certain (finite or
asymptotic) LOCC transformations are possible. How-
ever, some measures have a wider significance that we
will discuss as they are introduced. Before we continue,
we consider some features of the distillable entanglement,
particularly with regard to its computation, as this will
be important for some of our later discussion.

The distillable entanglement – The distillable entangle-
ment, ED(ρ), provides us with the rate at which noisy
mixed states ρ may be converted into the ‘gold standard’
singlet state by LOCC alone. It formal definition is

ED(ρ) := sup
{

r : lim
n→∞

[

inf
Ψ

tr|Ψ(ρ⊗n) − Φ(2rn)|
]

= 0
}

.

The complexity of this variational definition has the un-
fortunate consequence that despite the importance of
the distillable entanglement as an entanglement measure,
very little progress has been made in terms of its compu-
tation. It is known for pure states (where it equals the
entropy of entanglement), and for some simple but very
special states [26, 78] (see the end of this paragraph). To
obtain such results and to gain insight into the amount
of distillable entanglement it is particularly important to
be able to provide bounds on its value. Upper bounds

can, by virtue of eq. (22) and requirement 3 for entan-
glement monotones, be provided by any other entangle-
ment monotone and measure but non-monotonic bounds
are also of interest (see the remainder of this section
on entanglement measures). Calculating lower bounds

is more challenging. Some lower bounds can be obtained
by the construction of explicit entanglement purification
procedures [43] in particular for Bell diagonal states [79].
As every state can be reduced to a Bell diagonal state
by random bi-local rotations of the form U ⊗ U (a pro-
cess known as twirling), these methods result in general
lower bounds applicable to all states. Improving these
bounds is very difficult as it generally requires the ex-
plicit construction of complex purification procedures in
the asymptotic limit of many copies.

In this context it is of considerable interest to study
the conditional entropy, which is defined as C(A|B) :=
S(ρAB)− S(ρB) for a bipartite state ρAB. It was known
for some time that −C(A|B) gives a lower bound for
both the entanglement cost and another important mea-
sure known as the relative entropy of entanglement [78].
However, this bound was also recently shown to be true
for the one way distillable entanglement:

ED(ρAB) ≥ DA→B(ρAB) ≥ max{S(ρB) − S(ρAB), 0}
(23)

where DA→B is the distillable entanglement under the
restriction that the classical communication may only go
one way from Alice to Bob [80]. This bound is known
as the Hashing Inequality [43], and is significant as it is
a computable, non-trivial, lower bound to ED(ρ), and
hence supplies a non-trivial lower bound to many other

entanglement measures. While this bound is generally
not tight, it should be noted that there are examples for
which it equals the distillable entanglement, these include
Bell diagonal states of rank 2 [37] and some other spe-
cial classes of state such as σ = A|00〉〈00| + B|00〉〈11| +
B∗|11〉〈00| + (1 − A)|11〉〈11| for which relative entropy
of entanglement (ie an upper bound to ED) can be com-
puted [26, 40] and is found to equal the hashing inequal-
ity.

The following subsection will present a variety of other
entanglement measures and quantities that provide up-
per bounds on the distillable entanglement.
• Entanglement Cost – For a given state ρ the entan-

glement cost quantifies the maximal possible rate r at
which one can convert blocks of 2-qubit maximally en-
tangled states into output states that approximate many
copies of ρ, such that the approximations become van-
ishingly small in the limit of large block sizes. If we
denote a general trace preserving LOCC operation by Ψ,
and write Φ(K) for the density operator corresponding
to the maximally entangled state vector in K dimensions,
i.e. Φ(K) = |ψ+

K〉〈ψ+
K |, then the entanglement cost may

be defined as

EC(ρ) = inf
{

r : lim
n→∞

[

inf
Ψ
tr|(ρ⊗n − Ψ(Φ(2rn))|

]

= 0
}

This quantity is again very difficult to compute indeed.
It is known to equal the entropy of entanglement for
pure bi-partite states. It can also be computed for triv-
ial mixed states ρ =

∑

i pi|ψi〉〈ψi| where the states |ψi〉
may be discriminated locally perfectly without destroy-
ing the states. A simple example is |ψ1〉 = |00〉 and
|ψ2〉 = (|11〉 + |22〉)/

√
2.

Fortunately, a closely related measure of entanglement,
namely the entanglement of formation, provides some
hope as it may actually equal the entanglement cost.
Therefore, we move on to discuss its properties in slightly
more detail.

• Entanglement of Formation – For a mixed state ρ
this measure is defined as

EF (ρ) := inf{
∑

i

piE(|ψi〉〈ψi|) : ρ =
∑

i

pi|ψi〉〈ψi|}.

Given that this measure represents the minimal possible
average entanglement over all pure state decompositions
of ρ, where E(|ψ〉〈ψ|) = S(trB{|ψ〉〈ψ|}) is taken as the
measure of entanglement for pure states, it can be ex-
pected to be closely related to the entanglement cost of
ρ. Note however that the entanglement cost is an asymp-
totic quantity concerning ρ⊗n in the limit n → ∞. It is
not self-evident and in fact unproven that the entangle-
ment of formation accounts for that correctly. Note how-
ever, that the regularised or asymptotic version of the
entanglement of formation, which is defined as

E∞
F (ρ) := lim

n→∞

EF (ρ⊗n)

n
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can be proven rigorously to equal the entanglement cost
[38], i.e.

E∞
F (ρ) = EC(ρ). (24)

Obviously, the computation of either, the entanglement
cost or the asymptotic entanglement of formation, are
extraordinarily difficult tasks. However, there are indi-
cations, though no general proof, that the entanglement
of formation is additive, i.e. EF (ρ) = E∞

F (ρ) = EC(ρ),
a result that would simplify the computation of EC(ρ)
significantly if it could be proven. Further to some nu-
merical evidence for the correctness of this property it is
also known that the entanglement of formation is addi-
tive for maximally correlated states in d× d dimensions,
ie states ρmc =

∑

ij aij |ii〉〈jj| [42]. More generally it is
a major open question in quantum information to decide
whether EF is a fully additive quantity, i.e. whether

EF (ρAB ⊗ σAB) = EF (ρAB) + EF (σAB). (25)

This problem is known to be equivalent to the strong

Party A Party B

Pair 1

Pair 2

FIG. 3: Schematic picture of the situation described by eq.
(26). The entanglement of formation of an arbitrary four
particle state |ψ〉, with particles held by parties A and B is
given is given on the left hand side of eq. (26). The right hand
side of eq. (26) is the sum of the entanglement of formation of
the states ρ1 = trA2B2

|ψ〉〈ψ| and ρ2 = trA1B1
|ψ〉〈ψ| obtained

by tracing out the lower upper half of the system.

superadditivity of EF

EF (ρAB
12 ) ? ≥? EF (ρAB

1 ) + EF (ρAB
2 ) (26)

where the indices 1 and 2 refer to two pairs or entangled
particles while A and B denote the different parties (see
fig. 3).

The importance of these additivity problems is twofold.
Firstly, additivity would imply that EF = EC leading to
a considerable simplification of the computation of the
entanglement cost. Secondly, the entanglement of for-
mation is closely related to the classical capacity of a
quantum channel which is given by the Holevo capacity
[81], and it can be shown that the additivity of EF is also
equivalent to the additivity of the classical communica-
tion capacity of quantum channels [48, 49, 50]!

The variational problem that defines EF is extremely
difficult to solve in general and at present one must either
resort to numerical techniques for general states [82], or
restrict attention to cases with high symmetry (e.g. [83,
84, 85]), or consider only cases of low dimensionality.
Quite remarkably a closed form solution is known for
bi-partite qubit states [44, 45, 82] that we present here.
This exact formula is based on the often used two-qubit
concurrence which is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (27)

where the λi are, in decreasing order, the square roots of
the eigenvalues of the matrix ρσy ⊗σyρ

∗σy ⊗σy where ρ∗

is the elementwise complex conjugate of ρ. For general
bi-partite qubit states it has been shown that [45]

EF (ρ) = s(
1 +

√

1 − C2(ρ)

2
) (28)

with

s(x) = −x log2 x− (1 − x) log2(1 − x). (29)

The two-qubit EF (ρ) and the two-qubit concurrence are
monotonically related which explains why some authors
prefer to characterise entanglement using only the con-
currence rather than the EF . It should be emphasised
however that it is only the entanglement of formation
that is an entanglement measure, and that the concur-
rence obtains its meaning via its relation to the entan-
glement of formation and not vice versa. For higher di-
mensional systems this connection breaks down - in fact
there is not even a unique definition of the concurrence.
Therefore, the use of the entanglement of formation even
in the two-qubit setting, is preferable.
• Entanglement measures from convex roof construc-

tions – The entanglement of formation EF is an impor-
tant example of the general concept of a convex roof con-
struction. The convex roof f̂ of a function f is defined
as the largest convex function that is for all arguments
bounded from above by the function f . A simple exam-
ple in one variable is given by f(x) = x4 − 2α2x2 and its
convex roof

f̂(x) =

{

x4 − 2α2x2 for |x| ≥ α
−α4 for |x| ≤ α

Fig. 4 illustrates this idea graphically with an example
for the convex roof for a function of a single variable.
Generally, for a function f defined on a convex subset of
R

n, the convex roof f̂ can be constructed via the varia-
tional problem

f̂(x) = inf
x=

∑

i
pixi

∑

i

pif(xi), (30)

where the infimum is taken over all possible probability
distributions pi and choices of xi such that x =

∑

i pixi.



13

It is easy to see that f̂ is convex, that f̂ ≤ f and that
any other convex function g that is smaller than f also
satisfies g ≤ f̂ .

The importance of the convex roof method is based on
the fact that it can be used to construct entanglement
monotones from any unitarily invariant and concave func-
tion of density matrices [86]. As this construction is very
elegant we will discuss how it works in some detail. Sup-
pose that we already have a function E of pure states,
that is known to be an entanglement monotone on pure

states. This means that for an LOCC transformation
from an input pure state |ψ〉 to output pure states |ψi〉
with probability pi, we have that:

E(|ψ〉) ≥
∑

i

piE(|ψ〉i). (31)

Such pure state entanglement monotones are very well
understood, as it can be shown that a function is a pure
state monotone iff it is a unitarily invariant concave func-
tion of the single-site reduced density matrices [86].

Let us consider the convex-roof extension Ê of such a
pure state monotone E to mixed states. A general LOCC
operation can be written as a sequence of operations by
Alice and Bob. Suppose that Alice goes first, then she
will perform an operation that given outcome j performs
the transformation:

ρ→ ρj =
1

pj

∑

k

AkρA
†
k (32)

where the Ak are Alice’s local Kraus operators corre-
sponding to outcome j, and pj=tr{∑k AkρA

†
k} is the

probability of getting outcome j. If k > 1 for any partic-
ular outcome, then Alice’s operation is impure, in that
an input pure state may be taken to a mixed output.
However, any such LOCC impure operation may be im-
plemented by first performing a LOCC pure operation,
where Alice and Bob retain information about all k, fol-
lowed by ‘forgetting’ the values of k at the end [177]. It
can be shown quite straightforwardly that if an entangle-
ment measure is convex, then the process of ‘forgetting’
cannot increase the average output entanglement beyond
the average output entanglement of the intermediate pure
operation. Hence if one shows that a convex quantity is
an entanglement monotone for pure LOCC operations,
then it will be an entanglement monotone in general.

This means that we need only prove that Ê is an en-
tanglement monotone for pure operations acting upon
input mixed states. This can be done as follows [86].
Let ρ be an input state with optimal decomposition
ρ =

∑

q(i)|φi〉〈φi|, i.e.

Ê(ρ) =
∑

i

q(i)E(|φ〉i). (33)

Suppose that we act upon this state with a measuring
LOCC operation, where outcome j signifies that we have

implemented the (not trace-preserving) pure map Λj (i.e.
corresponding to a single Kraus-operator). Let us define:

p(j|i) := tr{Λj(|φi〉)},
p(j) := tr{Λj(ρ)}.

It is clear that p(j) =
∑

i q(i)p(j|i), as required by
the standard probabilistic interpretation of ensembles.
Hence given outcome j the state ρ transforms to:

ρj =
1

p(j)

∑

i

q(i)Λj(|φ〉i)

=
1

p(j)

∑

i

p(i, j)
Λj(|φ〉i)
p(j|i)

=
∑

i

p(i|j)Λj(|φ〉i)
p(j|i) . (34)

Hence by the convexity of Ê we have that:

Ê(ρj) ≤
∑

i

p(i|j)Ê
(

Λj(|φ〉i)
p(j|i)

)

(35)

and because Ê is a monotone for operations from pure
to pure states, and as each Λj(|φ〉i) is pure by assertion,
we find that:

∑

j

p(j)Ê(ρj) ≤
∑

j

p(j)
∑

i

p(i|j)Ê
(

Λj(|φ〉i)
p(j|i)

)

=
∑

i

q(i)
∑

j

p(j|i)Ê
(

Λj(|φ〉i)
p(j|i)

)

≤
∑

i

q(i)Ê(|φi〉)

= Ê(ρ) (36)

Hence it can be seen that the convex-roof of any pure
state entanglement monotone is automatically an en-
tanglement monotone for LOCC transformations from
mixed states to mixed states. Together with the result
that a function of pure states is an entanglement mono-
tone iff it is a unitarily invariant concave function of the
single-site density matrices [86], this provides a very ele-
gant way of constructing many convex-roof entanglement
monotones. It is interesting to note that although this
method can also be used to construct monotones under
separable operations, it does not work for constructing
monotones under the set of PPT transformations, as un-
like the case of LOCC/ separable operations, an impure

PPT operation cannot always be equated to a pure PPT

operation plus forgetting [6].
• Relative entropy of entanglement – So far we dis-

cussed the extremal entanglement measures, entangle-
ment cost and entanglement of distillation. For some
time it was unclear whether they were equal or whether
there are any entanglement measures that lie between
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x

f(x)

FIG. 4: A schematic picture of the convex roof construction
in one dimension. The non-convex function f(x) is given by
the solid line. The dotted curve is a convex function smaller
than f and the convex roof, the largest convex function that
is smaller than f , is drawn as a dashed curved (it coincides
in large parts with f).

these two. The regularised version of the relative entropy

of entanglement provides an example of a measure that
lies between EC and ED.

One way of understanding the motivation for its def-
inition is by considering total correlations. These are
measured by the quantum mutual information [10]

I(ρAB) = S(ρA) + S(ρB) − S(ρAB) . (37)

Employing the quantum relative entropy

S(ρ||σ) := tr{ρ log ρ− ρ log σ} (38)

which is a measure of distinguishability between quan-
tum states one may then rewrite the quantum mutual
information as

I(ρAB) = S(ρAB||ρA ⊗ ρB) . (39)

If the total correlations are quantified by a comparison of
the state ρAB with the uncorrelated state ρA ⊗ ρB then
it is intuitive to try and measure the quantum part of
these correlations by a comparison of ρAB with the closest
separable state - a classically correlated state devoid of
quantum correlations. This approach gives rise to the
general definition of the relative entropy of entanglement
[25, 26, 46, 78] with respect to a set X as

EX
R (ρ) := inf

σ∈X
S(ρ||σ). (40)

This definition leads to a class of entanglement measures
known as the relative entropies of entanglement (see [77]
for a possible operational interpretation). In the bipar-
tite setting the set X can be taken as the set of separa-
ble states, states with positive partial transpose, or non-
distillable states, depending upon what you are regard-
ing as ‘free’ states. In the multiparty setting there are

even more possibilities [46, 87] but for each such choice
a valid entanglement measure is obtained as long as the
set X is mapped onto itself under LOCC (one may even
consider more general classes of operations as long as X
is mapped onto itself). Employing the properties of the

The set of all states

The set X

ρ

σ

FIG. 5: The relative entropy of entanglement is defined as the
smallest relative entropy distance from the state ρ to states σ
taken from the set X. The set X may be defined as the set of
separable states, non-distillable states or any other set that is
mapped onto itself by LOCC.

quantum relative entropy it is then possible to prove that
it is a convex entanglement measure satisfying all the con-
ditions 1 - 4 [26] which is also asymptotically continuous
[88]. The bipartite relative entropies have been used to
compute tight upper bounds to the distillable entangle-
ment of certain states [89], and as an invariant to help
decide the asymptotic interconvertibility of multipartite
states [90, 91, 95]. The relative entropy of entanglement
is bounded from below by the conditional entropy

ER(σ) ≥ max{S(σA), S(σB)} − S(σAB)

which can be obtained from the fact that for any bi-
partite non-distillable state ρ we have

S(σA) + S(σA||ρA) ≤ S(σAB) + S(σAB||ρAB),

S(σB) + S(σB ||ρB) ≤ S(σAB) + S(σAB||ρAB).

The relative entropy measures are generally not additive,
as bipartite states can be found where

EX
R (ρ⊗n) 6= nEX

R (ρ). (41)

The regularized relative entropy of entanglement

E∞
R ,X := lim

n→∞

EX
R (ρ⊗n)

n

is therefore of some interest. In various cases exhibiting a
high degree of symmetry the regularised versions of some
relative entropy measures can be calculated employing
ideas from semi-definite programming and optimization
theory [96]. These cases include the Werner states, i.e.
states that are invariant under the action of unitaries



15

of the form U ⊗ U , and which take the form σ(p) =
pσa +(1− p)σs, where p ∈ (1/2, 1] and σa (σs) are states
proportional to the projectors onto the anti-symmetric
(symmetric) subspace. It can be shown that [89]

E∞
R ,PPT (σ(p)) =







1 −H(p), p ≤ d+2
2d

lg d+2
d + (1 − p) lg d−2

d+2 , p >
d+2
2d

(42)

where H(p) = −p lg p−(1−p) lg(1−p). It is notable that
while this expression is continuous in p it is not differen-
tiable for p = 1/2 + 1/d. These results can be extended
to the more general class of states that is invariant under
the action of O ⊗ O, where O is an orthogonal transfor-
mation [97].

Other distance based measures – In eq. (40) one may
consider replacing the quantum relative entropy by dif-
ferent distance measures to quantify how far a particular
state is from a chosen set of disentangled states. Many
interesting examples of other functions that can be used
for this purpose may be found in the literature (see e.g.
[25, 26, 98]). It is also worth noting that the relative en-
tropy functional is asymmetric, in that S(ρ||σ) 6= S(σ||ρ).
This is connected with asymmetries that can occur in the
discrimination of probability distributions [26]. One can
consider reversing the arguments and tentatively define
an LOCC monotone JX(ρ) := inf{S(σ||ρ) : σ ∈ X}.
The resulting function has the advantage of being addi-
tive, but unfortunately it has the problem that it can
be infinite on pure states [99]. An additive measure that
does not suffer from this deficiency will be presented later
on in the form of the ‘squashed’ entanglement.

• The Distillable Secret Key– The Distillable Secret
Key, KD(ρ), quantifies the asymptotic rate at which Al-
ice and Bob may distill secret classical bits from many
copies of a shared quantum state. Alice and Bob may
use a shared quantum state to distribute a classical
bit of information - for instance if they share a state
1/2(|00〉〈00|+ |11〉〈11|), then they may measure it in the
|0〉, |1〉 basis to obtain an identical classical bit 0, 1, which
could form the basis of a cryptographic protocol such as
one-time pad (see e.g. [10] for a description of one-time
pad). However,if we think of a given bipartite mixed state
ρAB as the reduction of a pure state held between Alice,
Bob, and a malicious third party Eve, then it is possible
that Eve could obtain information about the secret bit
from measurements on her subsystem. In defining KD

it is assumed that each copy of ρAB is purified indepen-

dently of the other copies. If we reconsider the example
of the state 1/2(|00〉〈00| + |11〉〈11|), we can easily see
that it is not secure. For instance, it could actually be
a reduction of a GHZ state |000〉 + |111〉 held between
Alice, Bob and Eve, in which case Eve could also have
complete information about the ‘secret’ bit. The quan-
tity KD is hence zero for this state, and is in fact zero
for all separable states.

One way of getting around the problem of Eve is to
use entanglement distillation. If Alice and Bob distill bi-
partite pure states, then because pure states must be un-
correlated with any environment, any measurements on
those pure states will be uncorrelated with Eve. More-
over, if the distilled pure states are EPR pairs, then
because each local outcome |0〉, |1〉 occurs with equal
probability, each EPR pair may be used to distribute
exactly 1 secret bit of information. This means that
KD(ρ) ≥ D(ρ). However, entanglement distillation is
not the only means by which a secret key can be dis-
tributed, it examples of PPT states are known where
KD(ρ) > 0, even though D(ρ) = 0 for all PPT states
[100]. It has also been shown that the regularized rela-
tive entropy with respect to separable states is an upper
bound to the distillable secret key, E∞

R ,SEP (ρ) ≥ KD(ρ)
[100].
• Logarithmic Negativity – The partial transposition

with respect to party B of a bipartite state ρAB expanded
in a given local orthonormal basis as ρ =

∑

ρij,kl|i〉〈j| ⊗
|k〉〈l| is defined as

ρTB :=
∑

i,j,k,l

ρij,kl|i〉〈j| ⊗ |l〉〈k|. (43)

The spectrum of the partial transposition of a density
matrix is independent of the choice of local basis, and is
independent of whether the partial transposition is taken
over party A or party B. The positivity of the partial
transpose of a state is a necessary condition for separa-
bility, and is sufficient to prove that ED(ρ) = 0 for a
given state [101, 102, 103]. The quantity known as the
Negativity [73, 104], N(ρ), is an entanglement monotone
[65, 105, 106, 107] that attempts to quantify the nega-
tivity in the spectrum of the partial transpose. We will
define the Negativity as

N(ρ) :=
||ρTB || − 1

2
, (44)

where ||X || :=tr
√
X†X is the trace norm. While being

a convex entanglement monotone, the negativity suffers
the deficiency that it is not additive. A more suitable
choice for an entanglement monotone may therefore be
the so called Logarithmic Negativity which is defined as

EN (ρ) := log2 ||ρTB || . (45)

The monotonicity of the negativity immediately implies
that EN is an entanglement monotone that cannot in-
crease under the more restrictive class of deterministic
LOCC operations, ie Φ(ρ) =

∑

i AiρA
†
i . While this is

not sufficient to qualify as an entanglement monotone
it can also be proven that it is a monotone under proba-
bilistic LOCC transformations [65]. It is additive by con-
struction but fails to be convex. Although EN is man-
ifestly continuous, it is not asymptotically continuous,
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and hence does not reduce to the entropy of entangle-
ment on all pure states.

The major practical advantage of EN is that it can
be calculated very easily. In addition it also has various
operational interpretations as an upper bound to ED(ρ),
a bound on teleportation capacity [107], and an asymp-
totic entanglement cost for exact preparation under the
set of PPT operations [19].
• The Rains bound – The logarithmic negativity, EN ,

can also been combined with a relative entropy concept
to give another monotone known as the Rains’ Bound

[17], which is defined as

B(ρ) := min
all states σ

[S(ρ||σ) + EN (σ)] . (46)

The function S(ρ||σ) +EN (σ) that is to be minimized is
not convex which suggests the existence of local minima
making the numerical minimization infeasible. Never-
theless, this quantity is of considerable interest as one
can observe immediately that B(ρ) is a lower bound to
EPPT

R (ρ) as EN (σ) vanishes for states σ that have a pos-
itive partial transpose. It can also be shown that B(ρ) is
an upper bound to the Distillable Entanglement. It is in-
teresting to observe that for Werner states B(ρ) happens
to be equal to limn→∞EPPT

R (ρ⊗n)/n [17, 89], a connec-
tion that has been explored in more detail in [19, 97, 109].
• Squashed entanglement – Another interesting entan-

glement measure is the squashed entanglement [47] (see
also [110]) which is defined as

Esq := inf

[

1

2
I(ρABE) : trE{ρABE} = ρAB

]

where :

I(ρABE) := S(ρAE) + S(ρBE) − S(ρABE) − S(ρE) .

In this definition I(ρABE) is the quantum conditional

mutual information, which is often also denoted as
I(A;B|E). The motivation behind Esq comes from re-
lated quantities in classical cryptography that determine
correlations between two communicating parties and an
eavesdropper. The squashed entanglement is a convex
entanglement monotone that is a lower bound to EF (ρ)
and an upper bound toED(ρ), and is hence automatically
equal to S(ρA) on pure states. It is also additive on tensor
products, and is hence a useful non-trivial lower bound to
EC(ρ). It has furthermore been proven that the squashed
entanglement is continuous [108], which is a non-trivial
statement because in principle the minimization must be
carried out over all possible extensions, including infi-
nite dimensional ones. Note that despite the complexity
of the minimization task one may find upper bounds on
the squashed entanglement from explicit guesses which
can be surprisingly sharp. For the totally anti-symmetric
state σa for two qutrits one obtains immediately (see Ex-
ample 9 in [47]) that ED(σa) ≤ Esq(σa) ≤ log2

√
3 which

is very close to the sharpest known upper bound on the

distillable entanglement for this state which is log2 5/3
[17, 89]. The Squashed entanglement is also known to
be lockable [7, 47], and is an upper bound to the secret
distillable key [7].
• Robustness quantities and norm based monotones –

This paragraph discusses various other approaches to en-
tanglement measures and then moves on to demonstrate
that they and some of the measures discussed previously
can actually be placed on the same footing.

Robustness of Entanglement – Another approach to
quantifying entanglement is to ask how much noise must
be mixed in with a particular quantum state before it
becomes separable. For example

P (ρ) := inf
σ
{λ |σ a state ; (1 − λ)ρ+ λσ ∈ SEP ; λ ≥ 0}

(47)
measures the minimal amount of global state σ that must
be mixed in to make ρ separable. Despite the intuitive
significance of equation (47), for mathematical reasons it
is more convenient to parameterize this noise in a differ-
ent way:

Rg(ρ) := inf t

such that t ≥ 0

and ∃ a state σ

such that ρ+ tσ is separable.

This quantity, Rg, is known as the Global Robustness of
entanglement [57], and is monotonically related to P (ρ)
by the identity P (ρ) = Rg(ρ)/(1 + Rg(ρ)). However,
the advantage of using Rg(ρ) rather than P (ρ) is that
the first quantity has very natural mathematical proper-
ties that we shall shortly discuss. The global robustness
mixes in arbitrary noise σ to reach a separable state,
however, one can also consider noise of different forms,
leading to other forms of robustness quantity. For in-
stance the earliest such quantity to be defined, which is
simply called the Robustness, Rs, is defined exactly as
Rg except that the noise σ must be drawn from the set
of separable states [111, 112, 118]. One can also replace
the set of separable states in the above definitions with
the set of PPT states, or the set of non-distillable states.
The robustness monotones can often be calculated or at
least bounded non-trivially, and have found applications
in areas such as bounding fault tolerance [57, 58].

Best separable approximation – Rather than mixing in
quantum states to destroy entanglement one may also
consider the question of how much of a separable state is
contained in an entangled state. The ensuing monotone is
known as the Best Separable Approximation [113], which
we define as

BSA(ρ) := inf tr{ρ− A}
such that A ≥ 0 ; A ∈ SEP

and (ρ−A) ≥ 0.
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This measure is not easy to compute analytically or nu-
merically. Note however, that replacing the set SEP by
the set PPT allows us to write this problem as a semidef-
inite programme [96] for which efficient algorithms are
known.

One shape fits all – It turns out that the robustness
quantities, the best separable approximation as well as
the negativity are all part of a general family of entan-
glement monotones. Such connections were first observed
in [107], where it was noted that the Negativity and Ro-
bustness are part of a general family of monotones that
can be constructed via a concept known as a base norm

[114]. We will explain this connection in the following.
However, our discussion will deviate a little from the ar-
guments presented in [107], as this will allow us to include
a wider family of entanglement monotones such as Rg(ρ)
and BSA(ρ).

To construct this family of monotones we require
two sets X,Y of operators satisfying the following con-
ditions: (a) X,Y are closed under LOCC operations
(even measuring ones), (b) X,Y are convex cones (i.e.
also closed under multiplication by non-negative scalars),
(c) each member of X (Y ) can be written in the form
αX(Y )×positive-semidefinite operator, where αX (Y ) are
fixed real constants, and (d) any Hermitian operator h
may be expanded as:

h = aΩ − b∆ (48)

where Ω ∈ X,∆ ∈ Y are normalised to have trace αX , αY

respectively, and a, b ≥ 0. Given two such sets X,Y and
any state ρ we may define an entanglement monotone as
follows:

RX,Y (ρ) := inf
Ω∈X,∆∈Y

{b | ρ = aΩ − b∆, a, b ≥ 0} (49)

Note that if Ω,∆ are also constrained to be quantum
states (i.e. αX = αY = 1), then we may rewrite this
equation:

RX,Y (ρ) =

inf{b | b ≥ 0, ∃∆ ∈ Y,Ω ∈ X s.t.
ρ+ b∆

1 + b
= Ω}

Hence equation (49) defines a whole family of quantities
that have a similar structure to robustness quantities.

In the more general case where αX , αY 6= 1, the quan-
tities RX,Y (ρ) will not be robustness measures, but they
will still be entanglement monotones. This can be shown
as follows, where we will suppress the subscripts X,Y for
clarity. Suppose that a LOCC operation acts on ρ to give
output ρi = Λi(ρ)/qi with probability qi. Suppose also
that the optimum expansion of the initial state ρ is:

ρ = aΩ −R∆

Then the output ensemble can be written as:

{qi ;
aΛi(Ω) −RΛi(∆)

qi
}

≡ {qi ; ãi
αXΛi(Ω)

tr{Λi(Ω)} − R̃i
αY Λi(∆)

tr{Λi(∆)}} (50)

where

ãi =
a tr{Λi(Ω)}

αXqi
; R̃i =

R tr{Λi(∆)}
αY qi

Now because of the structure of each operator in X,Y ,
we have that ãi, R̃i ≥ 0, and hence for each outcome i the
expansion in (50) is a valid decomposition. This means
that the average output entanglement satisfies:

∑

i

qiR(ρi) ≤
∑

i

qiR̃i = R
∑

i

tr{Λi(∆)}
αY

= R (51)

and hence the RX,Y give entanglement monotones. It
is also not difficult to show that the RX,Y are convex
functions. In the case that the two sets X and Y are
identical, then the quantity

||h||X,X := inf
Ω,∆∈X

{a+ b | h = aΩ − b∆, a, b ≥ 0} .

can be shown to be a norm, and in fact it is a norm of the
so-called base norm kind. As ||h||X,X can be written as a
simple function of the corresponding RX,X , this gives the
robustness quantities a further interesting mathematical
structure.

All the monotones mentioned at the beginning of this
subsection fit into this family - the ‘Robustness’ arises
when both X,Y are the set of separable operators; the
‘Best Separable approximation’ arises whenX is the set of
separable operators, Y is the set {positive semi-definite
operators×− 1}; the global robustness arises when X is
the set of separable operators, Y is the set of all positive
semidefinite operators [57, 111, 112, 118]; the Negativity
arises when ||ρ||X,Y where both X,Y are the set of nor-
malised Hermitian matrices with positive partial trans-
position. Note that the ‘Random Robustness’ is not a
monotone and so does not fit into this scheme, for defi-
nition and proof of non-monotonicity see [111, 112].

The greatest cross norm monotone – Another form of
norm based entanglement monotone is the cross norm

monotone proposed in [115, 116, 117]. The greatest cross

norm of an operator A is defined as:

||A||gcn := inf

[

n
∑

i=1

||ui||1||vi||1 : A =
∑

i

ui ⊗ vi

]

(52)

where ||y||1 := tr{
√

y†y} is the trace norm, and the
infimum is taken over all decompositions of A into fi-
nite sums of product operators. For finite dimensions it
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can be shown that a density matrix ρAB is separable iff
||ρ||gcn=1, and that the quantity:

Egcn(ρ) := ||ρ||gcn − 1 (53)

is an entanglement monotone [115, 116, 117]. As it is ex-
pressed as a complicated variational expression, Egcn(ρ)
can be difficult to calculate. However, for pure states
and cases of high symmetry it may often be computed
exactly. Although Egcn(ρ) does not fit precisely into the
family of base norm monotones discussed above, there is
a relationship. If the sum in (52) is restricted to Her-

mitian ui and vi (which is of course only allowed if A
is Hermitian), then we recover precisely the base norm
||A||X,Y , where X,Y are taken as the set of separable
states. Hence Egcn is an upper bound to the robustness
[115, 116, 117].
• Entanglement Witness monotones – Entanglement

Witnesses are tools used to try to determine whether a
state is separable or not. A Hermitian operator W is
defined as an Entanglement Witness if:

∀ ρ ∈ SEP tr{Wρ} ≥ 0

and (54)

∃ρ s.t. tr{Wρ} < 0.

Hence W acts as a linear hyperplane separating some
entangled states from the convex set of separable ones.
Many entanglement witnesses are known, and in fact the

SEP

FIG. 6: An entanglement witness is a Hermitean operator
defining a hyperplane in the space of positive operators such
that for all separable states we have trWρ ≥ 0 and there is a
ρ for which trWρ < 0.

CHSH inequalities are well known examples. One can
take a suitable Entanglement Witness (EW) and use the
amount of ‘violation’

Ewit(W ) = max{0,−tr{Wρ}} (55)

as a measure of the non-separability of a given state.
Many entanglement monotones can be constructed by

choosing (bounded) sets of of EWs and defining mono-
tones as the minimal violation over all witnesses taken
from the chosen set - see e.g. [118]. It turns out that this
approach also offers another unified way of understand-
ing the robustness and negativity measures discussed in
the previous item [118].

This concludes our short survey of basic entanglement
measures. Our review has mostly been formulated for
two-party systems with finite dimensional constituents.
In the remaining two subsections we will briefly summa-
rize the problems that we are faced with in more general
settings - where we are faced with more parties and
infinite dimensional systems. We will present some of
the results that have been obtained so far, and highlight
some unanswered questions.

INFINITE DIMENSIONAL SYSTEMS

In the preceding sections we have explicitly considered
only finite dimensional systems. However, one may also
develop a theory of entanglement for the infinite dimen-
sional setting. This setting is often also referred to as
the continuous variable regime, as infinite dimensional
pure states are usually considered as wavefunctions in
continuous position or momentum variables. The quan-
tum harmonic oscillator is an important example of a
physical system that needs to be described in an infi-
nite dimensional Hilbert space, as it is realized in many
experimental settings, e.g. as modes of quantized light.

General states – A naive approach to infinite di-
mensional systems encounters several complications, in
particular with regards to continuity. Firstly, we will
need to make some minimal requirements on the Hilbert
space, namely that the system has the property that
tr{expH/T <∞} to avoid pathological behaviour due to
limit points in the spectrum [119]. The harmonic oscilla-
tor is an example of a system satisfying this constraint.
Even so, without further constraints, entanglement mea-
sures cannot be continuous because by direct construc-
tion one may demonstrate that in any arbitrarily small
neighborhood of a pure product state, there exist pure
states with arbitrarily strong entanglement as measured
by the entropy of entanglement [120]. The following ex-
ample makes this explicit. Chose σ0 = |ψ0〉〈ψ0| where

|ψ0〉 = |φ(0)
A 〉 ⊗ |φ(0)

B 〉, and consider a sequence of pure
states σk = |ψk〉〈ψk| defined by

|ψk〉 =
√

1 − ǫk|ψ0〉 +

√

ǫk
k

k
∑

n=1

|φ(n)
A 〉 ⊗ |φ(n)

B 〉, (56)

where ǫk = 1/ log(k)2 and {|φ(n)
A/B〉 : n ∈ N0} are or-

thonormal bases. Then {σk}∞k=1 converges to σ0 in trace-
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norm, i.e., limk→∞ ‖σk−σ0‖1 = 0 while limk→∞ E(σk) =
∞. Obviously, E is not continuous around the state σ0.

However, this perhaps surprising feature can only oc-
cur if the mean energy of the states σk grows unlimited in
k. If one imposes additional constraints such as restrict-
ing attention to states with bounded mean energy then
one finds that the continuity of entanglement measures
can be recovered [120]. More precisely, given the Hamil-
tonianH and the set SM = {ρ ∈ S|tr[ρH ] ≤M} where S
is the set of all density matrices, then we find for example
that for σ ∈ SM (H), M > 0, being a pure state that is
supported on a finite-dimensional subspace of S(H), and
{σn}∞n=1, σn ∈ SnM (H⊗n), being a sequence of states
satisfying

lim
n→∞

‖σn − σ⊗n‖ = 0, (57)

then

lim
n→∞

|EF (σ⊗n) − EF (σn)|
n

= 0. (58)

Similar statements hold true for the entropy of entan-
glement and the relative entropy of entanglement. The
technical details can be found in [120]. Even with this
constraint however, the description of entanglement and
its quantification is extraordinarily difficult, although
some concrete statements can be made [121]. Note how-
ever, that for continuous entanglement measures that are
strongly super-additive (in the sense of eq. (26) in the
situation given in fig. 3) one can provide lower bounds
on entanglement measures in terms of a simpler class of
state, the Gaussian states [122]. This motivates the con-
sideration of more constrained sets of states.

Gaussian states – A further simplification that can
be made is to consider only the set of Gaussian quantum
states. This set of states is important because not only
do they play a key role in several fields of theoretical and
experimental physics, but they also have some attrac-
tive mathematical features that enable many interesting
problems to be tackled using basic tools from linear alge-
bra. We will concentrate on this class of states, as they
have been subject to the most progress. The systems
that are being considered possess n canonical degrees of
freedom representing for example n harmonic oscillators,
or n field modes of light. These canonical operators are
usually arranged in vector form

O = (O1, . . . , O2n)T = (X1, P1, . . . , Xn, Pn)T . (59)

Then the canonical commutation relations take the form
[Oj , Ok] = iσj,k, where we define the symplectic matrix
as follows:

σ :=

n
⊕

j=1

[

0 1
−1 0

]

. (60)

States ρ may now also be characterized by functions that
are defined on phase space. Given a vector ξ ∈ R

2n, the

Weyl or Glauber operator is defined as:

Wξ = eiξT σO. (61)

These operators generate displacements in phase space,
and are used to define the characteristic function of ρ:

χρ(ξ) = tr[ρWξ]. (62)

This can be inverted by the transformation [123]:

ρ =
1

(2π)n

∫

d2nξχρ(−ξ)Wξ, (63)

and hence the characteristic function uniquely specifies
the state. Gaussian states are now defined as those states
whose characteristic function is a Gaussian [9], i.e.,

χρ(ξ) = χρ(0)e−
1

4
ξT Γξ+DT ξ, (64)

where Γ is a 2n × 2n-matrix and D ∈ R
2n is a vector.

In defining Gaussian states in this way it is easy to see
that the reduced density matrix of any Gaussian state
is also Gaussian - to compute the characteristic function
of a reduced density matrix we simply set to zero any
components of ξ corresponding to the modes being traced
out.

As a consequence of the above definition, a Gaussian
characteristic function can be characterized via its first
and second moments only, such that a Gaussian state of
n modes requires only 2n2 +n real parameters for its full
description, which is polynomial rather than exponential
in n. The first moments form the displacement vector
dj = 〈Oj〉ρ = tr[Ojρ] j = 1, ..., 2n which is linked to the
above D by D = σd. They can be made zero by means
of a unitary translation in the phase space of individual
oscillators and carry no information about the entangle-
ment properties of the state.

The second moments of a quantum state are defined as
the expectation values 〈OjOk〉. Because of the canonical
commutation relationships the value of 〈OkOj〉 is fixed
by the value of 〈OjOk〉 (the operators Oj ,Ok either com-
mute, or their commutator is proportional to the iden-
tity), and so all second moments can be embodied in the
real symmetric 2n× 2n covariance matrix γ which is de-
fined as

γj,k = 2Re tr [ρ (Oj − 〈Oj〉ρ) (Ok − 〈Ok〉ρ)]
= tr [ρ ({Oj , Ok} − 2〈Oj〉ρ〈Ok〉ρ)] (65)

where {} denotes the anticommutator. The link to the
above matrix Γ is Γ = σT γσ. With this convention, the
covariance matrix of the n-mode vacuum is simply 112n.
Clearly, not all real symmetric 2n× 2n-matrix represent
quantum states as these must obey the Heisenberg un-
certainty relation. In terms of the second moments the
‘uncertainty principle’ can be written as the matrix in-
equality

γ + iσ ≥ 0 . (66)
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Note that for one mode this uncertainty principle is ac-
tually stronger than the usual Heisenberg uncertainty
principle presented in textbooks, and in fact equation
(66) is the strongest uncertainty relationship that may
be imposed on the 2nd-moments 〈OjOk〉. This is be-
cause it turns out that any real symmetric matrix γ sat-
isfying the uncertainty principle (66) corresponds to a
valid quantum state. Proving equation (66) is actually
not too difficult [124, 125] - we start with a 2n compo-
nent vector of complex numbers y, and define an oper-
ator Y :=

∑

j yj(Oj − 〈Oj〉). Then the positivity of ρ

implies that tr{ρY †Y } ≥ 0 ∀ y. A little algebra, and use
of the canonical commutation relationships, shows that
tr{ρY †Y } ≥ 0 ∀ y ⇔ γ + iσ ≥ 0.

This observation has quite significant implications con-
cerning the separability of two-mode Gaussian states
shared by two parties. Indeed, a necessary condition for
the separability of Gaussian states can be formulated on
the basis of the partial transposition, or more precisely
partial time reversal, expressed on the level of covariance
matrices. In a system with canonical degrees of freedom
time reversal is characterized by the transformation that
leaves the positions invariant but reverses the relevant
momentaX 7→ X, P 7→ −P . A two-party Gaussian state
is then separable exactly if the covariance matrix corre-
sponding to the partially transposed state again satisfies
the uncertainty relations [126, 127, 128, 129, 130]. More
advanced questions concerning the interconvertibility of
pairs of states under local operations can also often be
answered fully in terms of the elements of the covariance
matrix [131, 132, 133, 135]. In particular, the question of
the interconvertability of pure bi-partite Gaussian states
of an arbitrary number of modes can be decided in full
generality [135].

Gaussian operations – The development of the the-
ory of entanglement of Gaussian states requires also the
definition of the concept of Gaussian operations. Gaus-
sian operations may be defined as those operations that
map all Gaussian input states onto a Gaussian output
state. This definition is not constructive but fortunately
more useful characterizations exist. Physically useful
is the fact that Gaussian operations correspond exactly
to those operations that can be implemented by means
of optical elements such as beam splitters, phase shifts
and squeezers together with homodyne measurements
[132, 133, 136].

The most general real linear transformation S which
implements the mapping

S : O 7−→ O′ = SO (67)

will have to preserve the canonical commutation relations
[O′

j , O
′
k] = iσjk11 which is exactly the case if S satisfies

SσST = σ . (68)

This condition is satisfied by the real 2n× 2n matrices S
that form the so-called real symplectic group Sp(2n,R).

Its elements are called symplectic or canonical transfor-
mations. It is useful to know that any orthogonal trans-
formation is symplectic. To any symplectic transforma-
tion S also ST , S−1,−S are symplectic. The inverse of
S is given by S−1 = σSTσ−1 and the determinant of
every symplectic matrix is det[S] = 1 [137, 138]. Given
a real symplectic transformation S there exists a unique
unitary transformation US acting on the state space such
that the Weyl operators satisfy USWξU

†
S = WSξ for all

ξ ∈ R
2. On the level of covariance matrices γ of an n-

mode system a symplectic transformation S is reflected
by a congruence

γ 7−→ SγST . (69)

Generalized Gaussian quantum operations may also be
defined analogously to the finite dimensional setting, ie
by appending Gaussian state ancillas, performing joint
Gaussian unitary evolution followed by tracing out the
ancillas or performing homodyne detection on them [9,
132, 133, 136].

Normal forms – Given a group of transformations on
a set of matrices it is always of great importance to iden-
tify normal forms for matrices that can be achieved un-
der this group of transformations. Of further interest
and importance are invariants under the group transfor-
mations. For the set of Hermitean matrices and the full
unitary group these correspond to the concepts of di-
agonalization and eigenvalues. In the setting of covari-
ance matrices and the symplectic group we are led to the
Williamson normal forms and the concept of symplec-
tic eigenvalues. Indeed, Williamson [139] (see [125] for a
more easily accessible reference) proved that for any co-
variance matrix Γ on n harmonic oscillators there exists
a symplectic transformation S such that

SΓST =

n
⊕

j=1

(

µj 0
0 µj

)

(70)

The diagonal elements µi are the so-called symplectic

eigenvalues of a covariance matrix Γ which are the in-
variants under the action of the symplectic group. The
set {µ1, . . . , µn} is usually referred to as the symplec-

tic spectrum. The symplectic spectrum can be obtained
directly from the absolute values of the eigenvalues of
iσ−1Γ. The transformation to the Williamson normal
form implements a normal mode decomposition thereby
reducing any computational problem, such as the com-
putation of the entropy, to that for individual uncoupled
modes. Each block in the Williamson normal form rep-
resents a thermal state for which the evaluation of most
physical quantities is straightforward.

Entanglement quantification – Equipped with
these tools we may now proceed to discuss the quantifica-
tion of entanglement in the Gaussian continuous variable
arena. Despite all the above technical tools the quantifi-
cation of entanglement for Gaussian states is complicated
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and only very few measures may be defined let alone com-
puted.
• Entropy of entanglement: On the level of pure state

we may again employ the entropy of entanglement which
we may now express in terms of the covariance matrix.
Assume Alice and Bob are in possession of nA +nB har-
monic oscillators in a Gaussian state described by the co-
variance matrix Γ and Alice holds nA of these oscillators.
Then it can be shown that the entropy of entanglement
is given by

S =

nA
∑

i=1

(

µi + 1

2
log2

µi + 1

2
− µi − 1

2
log2

µi − 1

2

)

(71)
where the µi are the symplectic eigenvalues of Alice’s re-
duced state described by the covariance matrix ΓA which
is simply the submatrix of Γ referring to the system per-
taining to Alice. These symplectic eigenvalues are, as re-
marked above, the positive eigenvalues of iσ−1ΓA. The
proof of the above formula is obtained by transforming
the covariance to its Williamson normal form and subse-
quently determine the entropy of the single mode states.
Note that on the set of Gaussian states the entropy is ev-
idently continuous and it can be shown that this remains
the case for the set of states with bounded mean energy
[120].
• Entanglement of formation: In the finite dimensional

setting the defintion of the entanglement of formation has
been unambiguous. In the Gaussian state setting how-
ever this is no longer the case. One may define the entan-
glement of formation of a Gaussian state either (i) with
respect to decompositions in pure Gaussian states or (ii)
with respect to decompositions in arbitrary pure states.
In case (i) it has been proven that the so-defined entan-
glement of formation is an entanglement monotone under
Gaussian operations and that it can be computed explic-
itly in the case where both parties hold a single harmonic
oscillator each. Remarkably, this entanglement of forma-
tion is even additive for symmetric two-mode states [141].
For the case of a single copy of a mixed symmetric Gaus-
sian two mode state it can also be demonstrated that the
definition (i) coincides with definition (ii) [140, 141]. The
entanglement of formation can be shown to be continuous
for systems with energy constraint [142].
• Distillable Entanglement: The distillable entangle-

ment in the continuous variable setting is, as expected,
extremely difficult to compute. Furthermore, its defi-
nition is not unambiguous as one may define distilla-
tion with respect to (i) Gaussian operations only, or (ii)
general quantum operations. It is remarkable that it
has been proven that the setting (i) does not actually
permit entanglement distillation at all [132, 133, 134].
Therefore, non-Gaussian operations need to be consid-
ered. Then, in setting (ii), for Gaussian states it can
be shown to be continuous and interestingly it can also
be demonstrated that for any ρ there exists a Gaussian

state ρG with the same first and second moments such
that ED(ρG) ≤ D(ρ). Finding explicit procedures im-
plementing distillation protocols is very difficult which
makes it very difficult to determine lower bounds on the
distillable entanglement. Various other measures of en-
tanglement, such as those described below, may be used
to find upper bounds on the distillable entanglement.

• Relative entropy of entanglement: As for the en-
tanglement of formation there are now various possible
definitions of the relative entropy of entanglement all of
which are at least as difficult to compute as in the fi-
nite dimensional setting. If the relative entropy of en-
tanglement should serve as a provable upper bound on
the distillable entanglement under general LOCC, then
it will have to be computed with respect to the set of
separable general continuous variable states. This is ob-
viously a very involved quantity and only known on pure
states where it equals the entropy of entanglement. If
one considers the relative entropy of entanglement of a
state with bounded mean energy with respect to the un-
restricted set of separable states, then it can be shown
that the relative entropy of entanglement is continuous
[120]. A more tractable setting is that of the relative
entropy of entanglement with respect to the set of Gaus-
sian separable states but in this case its interpretation is
unclear.

• Logarithmic negativity: As in the finite dimensional
setting, most entanglement measures are exceedingly dif-
ficult to compute. The exception is again the logarithmic
negativity which is an entanglement monotone [65] but
differs, on pure states, from the entropy of entanglement.
For a system of n = nA + nB harmonic oscillators in a
Gaussian state described by the covariance matrix Γ, the
logarithmic negativity can again be expressed in terms
of symplectic eigenvalues. Indeed, considering the co-
variance matrix ΓTB of the partially transposed state we
find

EN = −
n

∑

i=1

log2[min(1, µ̃k)] (72)

where the µ̃k form the symplectic spectrum for the par-
tially transposed state described by covariance matrix
ΓTB , ie the symplectic eigenvalues. This formula is again
proven by applying a normal mode decomposition, this
time to the partially transposed covariance matrix, re-
ducing the problem to a single mode question. It is in-
teresting to note that on Gaussian states the logarithmic
negativity also possesses an interpretation as a special
type of entanglement cost [19].

The tools for the manipulation and quantification are
used in the assessment of the quality of practical opti-
cal entanglement manipulation protocols. It should also
be noted that these tools have been used successfully to
study entanglement properties of quasi-free fields on lat-
tices (i.e. lattices of harmonic oscillators) initiating the
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study of the scaling behaviour of entanglement between
contiguous blocks in the ground state of interacting quan-
tum systems [143]. The above methods and quantities
permitted the rigorous proofs of the scaling of entan-
glement between contiguous blocks in the ground state
of a linear harmonic chain with a Hamiltonian that is
quadratic in position and momentum[143] and a rigor-
ous connection between the entanglement of an arbitrary
set of harmonic oscillators and its surrounding with the
boundary area [144, 145]. This illustrates the usefulness
of the results that have been obtained in continuous vari-
able entanglement theory over the last years.

Multi-particle entanglement – Although the two-
party setting has provided many interesting examples
of quantum entanglement, the multiparty setting allows
us to explore a much wider range of effects. Phenom-
ena such as quantum computation especially when based
on cluster states [146], entanglement enhanced measure-
ments [147, 148], multi-user quantum communication
[149, 150, 151, 152] and the GHZ paradox all require con-
sideration of systems with more than two particles. For
this reason it is important to investigate entanglement
in the multi-party setting. We will proceed along similar
lines to the bi-partite setting, first discussing briefly basic
properties of states and operations and then describing
various approaches to the quantification of multi-particle
entanglement.

States and Operations – In the following we are go-
ing to concentrate again on local operations and clas-
sical communication whose definition extend straightfor-
wardly to the multi-party setting. Some remarks will also
be made concerning PPT operations which are here de-
fined as operations that preserve ppt-ness of states across
all possible bi-partite splits. That is, any three-party
state shared between A, B and C that remains positive
under partial transposition of particle A or B or C is
mapped again onto a state with this property.

In the bi-partite setting we initiated our discussions
with the identification of some general properties of
multi-party entangled states such as the identification of
disentangled states and maximally entangled states. At
this stage crucial differences between the two-party and
the multi-party setting become apparent. Let us begin
by trying to identify the equivalent of the two-party max-
imally entangled states. In the bi-partite setting we al-
ready identified qubit states of the form (|00〉+ |11〉)/

√
2

maximally entangled because every other qubit state can
be obtained from it with certainty using LOCC only. One
natural choice for a state with this property could be the
GHZ-state

|GHZ〉 =
1√
2
(|0〉A|0〉B|0〉C + |1〉A|1〉B|1〉C). (73)

This state has the appealing property that its entangle-
ment across any bi-partite cut e.g. party A versus parties

B and C assume the largest possible value of 1 ebit. Also,
a local measurement in the |±〉 = (|0〉± |1〉)/

√
2 basis for

example on party A allows us to create deterministically
a maximally entangled two-party state of parties B and
C. Then we can obtain any other two-party entangled
state for parties B and C by LOCC. Unfortunately, how-
ever there are tri-partite entangled states that cannot be
obtained from the GHZ state using LOCC alone. One
such example is the W-state [153]

|W 〉 =
1√
3
(|0〉A|0〉B|1〉C + |0〉A|1〉B|0〉C + |1〉A|0〉B|0〉C).

(74)
Note however that LOCC operations applied to a GHZ-
state allow us to approximate the W-state as closely as
we like, albeit with decreasing success probability. In the
four party setting however it can be shown that there
are pairs of pure states that cannot even be obtained
from each other approximately employing LOCC alone
[154]. This clearly shows that on the single-copy level it is
not possible to establish a generic notion of a maximally
entangled state.

Of course we have already learnt in the bi-partite set-
ting that the requirement of exact transformations on
single copies can lead to phenomena such as incompara-
ble states and does not yield a simple and unified picture
of entanglement. In the bi-partite setting such a uni-
fied picture for pure state entanglement emerges however
in the asymptotic setting of arbitrarily many identically
prepared states. One might therefore wonder whether a
similar approach will be successful in multi-partite sys-
tems. These hopes will be dashed in the following. In the
asymptotic setting we would need to establish the possi-
bility for the reversible interconversion in the asymtptotic
setting. If that were possible we could rightfully claim
that all tri-partite entanglement is essentially equiva-
lent and only appears in different concentrations that we
could then quantify unambiguously. The simplest situ-
ation that one may consider to explore this possibility
is the interconversion between GHZ and the EPR pairs
across parties AB, AC and BC, ie in the limit N → ∞
we would like to see

|GHZ〉⊗N
⇌ |EPR〉⊗nAB

AB ⊗ |EPR〉⊗nAC

AB ⊗ |EPR〉⊗nBC

AB .
(75)

To decide this question one needs to identify sufficiently
many entanglement monotones. In the case of reversibil-
ity these entanglement monotones will remain constant.
The local entropies represent such a monotone. These are
not enough to decide the question but it turns out that
ER(ρAB) + S(ρAB), ie the sume of the relative entropy
of entanglement of the reduction to two parties and the
entanglement between these two parties and the third,
is also an entanglement monotone in this setting. This
is then sufficient to prove that the above process cannot
be achieved reversibly [90]. This result suggests that as
opposed to the bi-partite setting there is not such a sim-
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ple and unique concept of a maximally entangled state
in the multi-partite setting.

One may however try and and make progress by
generalizing the idea of a single entangled state from
which all other states can be obtained reversibly in
the asymptotic setting. Instead one may consider a
set of states from which all other state may be ob-
tained asymptotically reversibly. The smallest such
set is usually referred to as an MREGS which stands
for Minimal Reversible Entanglement Generating Set
[156]. It was natural to try and see whether the
set {|GHZ〉ABC , |EPR〉AB, |EPR〉AC , |EPR〉BC} is suf-
ficient to generate the W-state reversibly. Unfortunately,
even this conjecture was proved wrong [91, 155]. Similar
results have also been obtained in the four-party setting
[92]. Therefore, an MREGS would also have to contain
the W-state as well. It is currently an open question
whether under LOCC operations any finite MREGS ac-
tually exists.

In another approach to overcome the difficulties pre-
sented above one may consider extensions of the set of
operations that is available for entanglement transfor-
mations. A natural generalization are PPT operations
that have already made an appearance in the bi-partite
setting. Adopting PPT operations indeed simplifies the
situation somewhat. In the single copy setting any k-
partite entangled state can be transformed, with finite
success probability, into any other k-partite entangled
state by PPT operations [93, 94]. The success proba-
bilities can be surprisingly large, e.g. the transforma-
tion from GHZ to W state succeeds with more than 75%
[93]. It is noteworthy that PPT operations also overcome
the constraint that is imposed by the non-increase of the
Schmidt-number under LOCC. Indeed, PPT operations
(and also the use of LOCC with bound entanglement as
a free resource) allow us to increase the Schmidt number.
This result already implicit in [19] was made explicit in
[19, 93]. It was hoped for that this strong increase in
probabilities and the vanishing of the Schmidt number
constraint would lead to reversibility in the multi-partite
setting, ie a finite MREGS under PPT operations. This
question is however still remains open [95].

Up until now we have restricted attention to pure
multi-party entangled states. Now let us consider the
definition of separable multi-particle states. The most
natural definition for disentangled states arises from the
idea that we call a state disentangled if we can create it
from a pure product state by the action of LOCC only.
This implies that separable states are of the form

ρ =
∑

i

piρ
i
A ⊗ ρi

B ⊗ ρi
C ⊗ ... (76)

where the A,B,C.. label different parties. However, one
can go beyond this definition. Indeed, the state (|00〉AB+
|11〉AB)/

√
2⊗ |0〉C is clearly entangled and therefore not

separable in the above sense. However, it also does not

exhibit three-party entanglement as the third party C
is uncorrelated from the other two. Therefore may call
this tri-partite state 2-entangled. One may now try and
generalize this idea to mixed states. For example we
could define as the set of 2-entangled states any ρ that
may be written in the form

ρ =
∑

i

piρ
(i)
A ⊗ ρ

(i)
BC +

∑

i

qiρ
(i)
B ⊗ ρ

(i)
AC +

∑

i

riρ
(i)
C ⊗ ρ

(i)
AB

(77)
with positive pi, qi and ri. Then, for N parties one may
then define k-entangled states as a natural generalization
of the above 3-party definition. While this definition ap-
pears natural it encounters problems when we consider
several identical copies of states of the form given above.
In that case one can obtain a 3-entangled state by LOCC
acting on two copies of the above 2-entangled state. As a
simple example consider a three party state where Alice
has two qubits and Bob and Charlie each hold one. Then
a state of the form: 1

2 [|0〉〈0|A1⊗EPR(A2, B)⊗|0〉〈0|C +
|1〉〈1|A1 ⊗ |0〉〈0|B ⊗ EPR(A2, C)] is only 2-entangled.
However, given two copies of this state the ‘classical flag’
particle A1 can enable Alice to obtain (with some prob-
ability) one EPR pair with Bob, and one with Charlie.
She can then use these EPR pairs and teleportation to
distribute any three party entangled state she chooses.
States of three qubits displaying a similar phenomenon
can also be constructed. Hence we are faced with a sub-
tle dilemma - either this notion of ‘k-entanglement’ is not
closed under LOCC, or it is not closed under taking many
copies of states. Note however that these states may still
have relevance for example in the study of fault-tolerant
quantum computation [58].

Quantifying Multi-partite entanglement – Already in
the bi-partite setting it was realized that there are many
non-equivalent ways to quantify entanglement [72]. This
concerned mainly the mixed state case, while in the pure
state case the entropy of entanglement is a distinguished
measure of entanglement. In the multipartite setting
this situation changes. As was discussed above it ap-
pears difficult to establish a common currency of multi-
partite entanglement even for pure states due to the lack
of asymptotically reversible interconversion of quantum
states. The possibility to define k-entangled states and
the ensuing ambiguities lead to additional difficulties in
the definition of entanglement measures in multi-partite
systems.

Owing to this there are many ways to go about quanti-
fying multipartite entanglement. Some of these measures
will be natural generalizations from the bi-partite setting
while others will be specific to the multi-partite setting.
These measures and their known properties will be the
subject of the remainder of this section.

Entanglement Cost and Distillable Entanglement – In
the bi-partite setting it was possible to define unam-
biguously the entanglement of pure states establishing a
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common ”currency” for entanglement. This then formed
the basis for unique definitions of the entanglement cost
and the distillable entanglement. The distillable entan-
glement determined the largest rate, in the asymptotic
limit, at which one may obtain pure maximally entangled
states from an initial supply of mixed entangled states
using LOCC only. However, in the multi-particle setting
there is no unique target state that one may aim for.
One may of course provide a target state specific defini-
tion of distillable entanglement, for example the largest
rate at which one may prepare GHZ states [59], cluster
states [60, 62] or any other class that one is interested
in. As these individual resources are not asymptotically
equivalent each of these measures will capture different
properties of the state in question.

One encounters similar problems when attempting to
define the entanglement cost. Again, one may use singlet
states as the resource from which to construct the state
by LOCC but one may also consider other resources such
as GHZ or W states. For each of these settings one may
then ask for the best rate at which one can create a target
state using LOCC in the asymptotic limit. Therefore we
obtain a variety of possible definitions of entanglement
costs.

While the interpretation of each of these measures is
clear it is equally evident that it is not possible to arrive
at a unique picture from abstract considerations alone.
The operational point of view becomes much more im-
portant as different resources may be readily available in
different experimental settings and then motivating dif-
ferent definitions of the entanglement cost and the distil-
lable entanglement.
• Relative Entropic Measures. Distance measures – In

the bipartite setting we have discussed various distance
based measures in which one minimizes the distance of a
state with respect to a set of states that does not increase
in size under LOCC. One such set was that of separable
states and a particularly important distant measure is
the relative entropy of entanglement. This lead to the
relative entropy of entanglement. As we discussed in the
first part of this section the most natural extension of the
definition of separable states in the multipartite setting
is given by

ρ =
∑

i

piρ
i
A ⊗ ρi

B ⊗ ρi
C ⊗ ... (78)

where the A,B,C.. label different parties. In analogy
with the bipartite definition one can hence define a mul-
tipartite relative entropy measure:

EX
R (ρ) := inf

σ∈X
S(ρ||σ) (79)

where X is now the set of multipartite separable states.
As in the bipartite case the resulting quantity is an en-
tanglement monotone which, for pure states, coincides
with the entropy of entanglement. Therefore, on pure

states, this measure is additive while it is known to be
sub-additive on mixed states. Remarkably, the multipar-
tite relative entropy of entanglement is not even additive
for pure states - a counterexample is provided by the
totally anti-symmetric state

|A〉 =
1√
6

∑

ijk

ǫijk|ijk〉 (80)

where ǫijk is the totally anti-symmetric tensor [95]. One
can also compute the relative entropy of entanglement
for some other tri-partite states. Examples of particular
importance in this respect are the W-state for which we
find

ER|W 〉 = log2

9

4
(81)

and the states |GHZ(α)〉 = α|000〉+β|111〉 for which we
find

ER|W 〉 = −|α|2 log2 |α|2 − |β|2 log2 |β|2 . (82)

More examples can be found quite easily.
Also in our discussion of multi-partite entanglement

we introduced the notion of k-entangled states. let us
denote the set of k-entangled state of an N-partite sys-
tem by SN

k . If ew explicitly consider the single copy
setting, then it is clear that that the set SN

k does not
increase under LOCC. As a consequence it can be used
as the basis for generalizations of the relative entropy of
entanglement simply replacing the set X above by SN

k .
We have learnt however that the set SN

k may grow when
allowing for two or more copies of the state. This imme-
diately implies that the so constructed measure will ex-
hibit sub-additivity again. Given that even the standard
definition for the multi-partite relative entropy of entan-
glement is sub-additive this should not be regarded as a
deficiency. Indeed, this subadditivity may be viewed as
a strength as it could lead to particularly strong bounds
on the associated distillable entanglement.

Exactly the same principle may be used to extend any
of the distance based entanglement quantifiers to multi-
party systems - one simply picks a suitable definition of
the ‘unentangled’ set X (i.e. a set which is closed under
LOCC operations, and complies with some notion of lo-
cality), and then defines the minimal distance from this
set as the entanglement measure. As stated earlier, one
may also replace the class of separable states with other
classes of limited entanglement - e.g. states containing
only bipartite entanglement. Such classes are not in gen-
eral closed under LOCC in the many copy setting and so
the resulting quantities may exhibit strong subadditivity
and their entanglement monotonicity needs to be verified
carefully.
• Robustness measures. Norm based measures. The ro-

bustness measures discussed in the bipartite case extend
straightforwardly to the multiparty case. In the bipartite
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case we constructed the robustness monotones from two
sets of operators X,Y that were closed under LOCC op-
erations, and in addition satisfied certain convexity and
‘basis’ properties. To define analogous monotones in the
multiparty case we must choose sets of multiparty oper-
ators that have these properties. One could for example
choose the sets X,Y to be the set of k-separable positive
operators, for any integer k.

• Entanglement of Assistance. Localizable entangle-

ment. Collaborative Localizable entanglement. One way
of characterizing the entanglement present in a mul-
tiparty state is to understand how local actions by
the parties may generate entanglement between two
distinguished parties. For example, in a GHZ state
1/

√
2(|000〉 + |111〉) of three parties, it is possible to

generate an EPR pair between any two parties using
only LOCC operations - if one party measures in the
1/

√
2(|0〉 ± |1〉) basis, then there will be a residual EPR

pair between the remaining two parties. This is the case
even though the reduced state of the two parties is by
itself unentangled. The first attempt to quantify this
phenomenon was the Entanglement of Assistance pro-
posed by [157]. The Entanglement of Assistance is a
property of 3-party states, and quantifies the maximal
bipartite entanglement that can be generated on aver-
age between two parties A,B if party C measures her
particle and communicates the result to A,B. A related
measure known as the Localizable Entanglement was pro-
posed and investigated in [52, 53, 54, 55] for the general
multiparty case - this is defined as the maximum entan-
glement that can be generated between two parties if all
remaining n parties act using LOCC on the particles that
they possess [51]. Both these measures require an under-
lying measure of bipartite entanglement to quantify the
the entanglement between the two singled-out parties. In
the original articles [52, 157] the pure state entropy of en-
tanglement was used, however, one can envisage the use
of other entanglement measures [158]. The Localizable
Entanglement has been shown to have interesting rela-
tions to correlation functions in condensed matter sys-
tems [52, 53, 54, 55].

As multiparty entanglement quantifiers, both the En-
tanglement of Assistance and the Localizable entangle-
ment have the drawback that they can deterministi-
cally increase under LOCC operations between all parties
[158]. This phenomenon occurs because these measures
are defined under the restriction that Alice and Bob can-
not be involved in classical communication with any other
parties - it turns out that in some situations allowing this
communication can increase the entanglement that can
be obtained between Alice and Bob [158]. This observa-
tion lead the authors of [158] to define the Collaborative

Localizable Entanglement as the maximal bipartite en-
tanglement (according to some chosen measure) that may
be obtained (on average) between Alice and Bob using
LOCC operations involving all parties. It is clear that

by definition these collaborative entanglement measures
are entanglement monotones.

It is interesting to note that although the bare Lo-
calizable entanglement is not a monotone, its regularised
version is a monotone for multiparty pure states [159]. In
[159] it is shown that the regularised version of the Lo-
calizable entanglement reduces to the minimal entropy of
entanglement across any bipartite cut that divides Alice
and Bob, which is clearly a LOCC monotonous quan-
tity by the previous discussion of bipartite entanglement
measures.
• Geometric measure. In the case of pure multiparty

states one could try to quantify the ‘distance’ from the
set of separable states by considering various functions of
the maximal overlap with a product state [98]. One inter-
esting choice of function is the logarithm. This was used
in [160] to define the following entanglement quantifier:

G(|ψ〉) := − log
{

sup(|〈ψ|α ⊗ β ⊗ γ...〉|2)
}

, (83)

where the supremum is taken over all pure product states.
This quantity is non-negative, equals zero iff the state
|ψ〉 is separable, and is manifestly invariant under local
unitaries. One can extend this quantity to mixed states
using a convex roof construction. However G is not an
entanglement monotone, and it is not additive for multi-
party pure states [161]. Nevertheless, G is worthy of in-
vestigation as it has useful connections to other entangle-
ment measures, and also has an interesting relationship
with the question of channel capacity additivity [161].
We could also have described G as a norm based mea-
sure, as the quantity sup(|〈ψ|α⊗β⊗ γ...〉|) is a norm (of
vectors) known to mathematicians as the injective tensor

norm [162].
• ‘Tangles’ and related quantities. Entanglement quan-

tification by local invariants. An interesting property of
bipartite entanglement is that it tends to be monoga-

mous, in the sense that if three parties A,B,C have the
same dimensions, and if two of the parties A and B are
very entangled, then a third party C can only be weakly
entangled with either A or B. If AB are in a singlet state
then they cannot be entangled with C at all. In [163]
this idea was put into the form of a rigorous inequal-
ity for three qubit states using a entanglement quantifier
known as the tangle, τ(ρ). For a qubit × n dimensional
systems the tangle is defined as

τ(ρ) =

{

inf
∑

i

piC
2(|ψi〉〈ψi|)

}

(84)

where C2(|ψ〉〈ψ|) is the square of the concurrence of pure
state |ψ〉 and the infimum is taken over all pure state
decompositions. The concurrence can be used in this
way as any pure state of a 2 × n system is equivalent
to a two qubit pure state. It has been shown that τ(ρ)
satisfies the inequality [163, 164]

τ(A : B) + τ(A : C) + τ(A : D) + ... ≤ τ(A : BCD...)
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where the notation A : X1X2... means that τ is computed
across the bipartite splitting between party A and parties
X1X2... This shows that the amount of bipartite entan-
glement between party A and several individual parties
B,C,D, .. is bounded from above by the amount of bipar-
tite entanglement between party A and parties BCD...
collectively.

In the case of three qubit pure states the residual tangle

τ3 = τ(A : BC) − τ(A : B) − τ(A : C)

is a local-unitary invariant that is independent of which
qubit is selected as party A, and might be proposed as
a ‘quantifier’ of three party entanglement for pure states
of 3-qubits. However, there are states with genuine three
party entanglement for which the residual tangle can be
zero (the W-state serves as an example [163]). However,
the residual tangle can only be non-zero if there is gen-
uine tripartite entanglement, and hence can be used as a
indicator of three party entanglement.

Another way to construct multiparty entanglement
measures for multi-qubit pure systems is simply to sin-
gle out one qubit, compute the entanglement between
that qubit and the rest of the system, and then aver-
age over all possible choices of the singled out qubit. As
any pure bipartite system of dimensions 2 × m can be
written in terms of two Schmidt coefficients, one can ap-
ply all the formalism of two-qubit entanglement. This
approach has been taken, for example, in the paper by
Meyer and Wallach [165]. That the quantity proposed in
[165] is essentially only a measure of the bipartite entan-
glement across various splittings was shown by Brennen
[167]. Extensions of this approach are presented in [166].

Local unitary invariants: The residual tangle is only
one of many local unitary invariants that have been de-
veloped for multiparty systems. Such local invariants
are very important for understanding the structure of
entanglement, and have also been used to construct pro-
totype entanglement measures. Examples of local invari-
ants that we have already mentioned are the Schmidt
coefficients and the Geometric measure. In the multi-
party case we may define the local invariants as those
functions that are invariant under a local group transfor-
mation of fixed dimensions. If each particle is assumed
for simplicity to have the same dimension d, then these
local groups are of the form A⊗B⊗C... where A,B,C..
are taken from a particular d-dimensional group repre-
sentation such as the unitary group U(d) or the group
of invertible matrices GL(d). The physical significance
of the local GL(d) invariants is that if two states have
different values for such an invariant then they cannot
even be inter-converted probabilistically using stochastic
LOCC (‘SLOCC’) operations. In the case of local unitary
groups one typically only need consider invariants that
are polynomial functions of the density matrix elements -
this is because it can be shown that two states are related

by a local unitary iff they have the same values on the set
of polynomial invariants [168]. For more general groups
a complete set of polynomial invariants cannot always be
constructed, and one must also consider local invariants
that are not polynomial functions of states - one example
is a local GL invariant called the ‘Schmidt rank’, which
is the minimal number of product state-vector terms in
which a given multiparty pure state may be coherently
expanded. It can be shown that one can construct an
entanglement monotone (the ‘Schmidt measure’) as the
convex-roof of the logarithm of this quantity [169].

Finding non-trivial local invariants is quite challenging
in general and can require some sophisticated mathemat-
ics. However, for pure states of some dimensions it is
possible to use such invariants to construct a variety of
entanglement quantifiers in a similar fashion to the tan-
gle. These quantifiers are useful for identifying different
types of multiparty entanglement. We refer the reader to
articles [168, 170, 171] and references therein for further
details.

SUMMARY, CONCLUSIONS, AND OPEN

PROBLEMS

Quantum entanglement is a rich field of research. In
recent years considerable effort has been expended on the
characterization, manipulation and quantification of en-
tanglement. The results and techniques that have been
obtained in this research are now being applied not only
to the quantification of entanglement in experiments but
also, for example, for the assessment of the role of entan-
glement in quantum many body systems and lattice field
theories. In this article we have surveyed many results
from entanglement theory with an emphasis on the quan-
tification of entanglement and basic theoretical tools and
concepts. Proofs have been omitted but useful results
and formulae have been provided in the hope that they
prove useful for researchers in the quantum information
community and beyond. It is the hope that this article
will be useful for future research in quantum information
processing, entanglement theory and its implications for
other areas such as statistical physics.

Despite the tremendous progress in the characterisa-
tion of entanglement in recent years, there are still sev-
eral major open questions that remain. Some significant
open problems include:

Multiparty entanglement: The general characterisation
of multiparty entanglement is a major open problem, and
yet it is particularly significant for the study of quantum
computation and the links between quantum information
and many-body physics. Particular unresolved questions
include:

• Finiteness of MREGS for three qubit states – In an
attempt to achieve a notion of reversibility in the
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multi-partite setting, the concept of MREGS was
introduced [156]. This was a set of N-partite states
for fixed local dimension from which all other such
states may be obtained asymptotically reversibly.
It was hoped for that such a set may contain only
a finite number of states. However, there are sug-
gestions [90, 91, 92, 155] that this may not the case.

• Distillation results for specific target states – In the
bi-partite setting the uniqueness of maximally en-
tangled states led to clear definitions for the dis-
tillable entanglement. As outlined above this is
not so in the multi-party setting. Given a spe-
cific interesting multiparty target state (e.g. GHZ
states, cluster states etc.), or set of multiparty tar-
get states, what are the best possible distillation
protocols that we can construct? Are there good
bounds that can be derived using multiparty entan-
glement measures? Some specific examples have
been considered [59, 60, 61] but more general re-
sults are still missing.

Additivity questions: Of all additivity problems, de-
ciding whether the entanglement of formation EF is ad-
ditive is perhaps the most important unresolved ques-
tion. If EF is additive this would greatly simplify the
evaluation of the entanglement cost. It would further-
more imply the additivity of the classical capacity of a
quantum channel [48, 49, 50]. Related to the additivity
question is the question of the monotonicity of the entan-
glement cost under general LOCC. This may be proven
reasonably straightforwardly if the entanglement cost it-
self is fully additive. However, without this assumption
no proof is known to the authors, and in fact a recent
argument seems to show that full additivity of the en-
tanglement cost is equivalent to its monotonicity [172].
In addition to EF , there are many other measures for
which additivity is unknown. Examples include the Dis-
tillable Entanglement and the Distillable Key.

Distillable entanglement – Distillable entanglement is
a well motivated entanglement measure of significant im-
portance. Its computation is however supremely difficult
in general and even the determination of the distillability
of a state is difficult. Indeed, good techniques or algo-
rithms for deciding whether a bipartite state is distillable
or not, and for bounding the distillable entanglement, are
still largely missing.

• Are there NPT bound entangled states? – In the
bi-partite setting there are currently three known
distinct classes of states in terms of their entangle-
ment properties under LOCC. These are the sepa-
rable states, the non-separable states with positive
partial transpose (which are also non-distillable),
and finally the distillable states. Some evidence
exists that there is another class of states that do

not possess a positive partial transpose but are nev-
ertheless non-distillable [173, 174].

• Bounds on the Distillable entanglement. Any en-
tanglement measure provides an upper bound on
the distillable entanglement. Various bounds have
been provided such as the squashed entanglement
[7, 47], the Rains bound [17] and asymptotic rel-
ative entropy of entanglement [25, 26]. The last
two of these coincide for Werner states [89] and it
is an open question whether they always coincide,
and whether they are larger or smaller than the
squashed entanglement.

Entanglement Measures – The present article has pre-
sented a host of entanglement measures. Many of their
properties are known but crucial issues remain to be re-
solved. Amongst these are the following.

• Operational interpretation of the relative entropy of

entanglement – While the entanglement cost and
the distillable entanglement possess evident opera-
tional interpretations no such clear interpretation
is known for the relative entropy of entanglement.
A possible interpretation in terms of the distilla-
tion of local information has been conjectured and
partially proven in [77].

• Calculation of various entanglement measures –

There are very few measures of entanglement that
can be computed exactly and possess or are ex-
pected to possess an operational interpretation. A
notable exception is the entanglement of formation
for which a formula exists for the two qubit case
[44]. Is it possible to compute, or at least derive
better bounds, for the other variational entangle-
ment measures? One interesting possibility is the
2-qubit case - in analogy to EF , is there a closed
form for the relative entropy of entanglement or the
squashed entanglement?

• Squashed entanglement – As an additive, con-
vex, and asymptotically continuous entanglement
monotone the Squashed entanglement is known to
possess almost all potentially desirable properties
as an entanglement measure. Nevertheless, there
are a number of open interesting questions - in par-
ticular: (1) is the Squashed entanglement strictly
non-zero on inseparable states, and (2) can the
Squashed entanglement be formulated as a finite
dimensional optimisation problem (with Eve’s sys-
tem of bounded dimension)?

• Asymptotic continuity and Lockability questions –

It is unknown whether measures such as the Dis-
tillable Key, the Distillable Entanglement, and the
Entanglement cost are asymptotically continuous,
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and it is unknown whether the Distillable entan-
glement or Distillable Key are lockable [68, 69, 70].
This is important to know as lockability quanti-
fies ‘continuity under tensor products’, and so is a
physically important property - if a system is sus-
ceptible to loss of particles, then any characteristic
quantified by a lockable measure will tend to be
very fragile in the presence of such noise.

Entanglement Manipulation – Entanglement can be
manipulated under various sets of operations, including
LOCC and PPT operations. While some understanding
of what is possible and impossible has been obtained, a
complete understanding has not been reached yet.

• Characterization of entanglement catalysis – For a
single copy of bi-partite pure state entanglement
the LOCC transformations are fully characterized
by the theory of majorization [28, 29, 30]. It was
discovered that there are transformations |φ〉 → |ψ〉
such that its success probability under LOCC is p <
1 but for which an entangled state |η〉 exists such
that |φ〉|η〉 → |ψ〉|η〉 can be achieved with certainty
under LOCC [33]. A complete characterization for
states admitting entanglement catalysis is currently
not known.

• Other classes of non-global operation. Reversibil-

ity under PPT operations – It is well established
that even in the asymptotic limit LOCC entan-
glement transformations of mixed states are irre-
versible. However in [19] it was shown that that
the antisymmetric Werner state may be reversibly
interconverted into singlet states under PPT opera-
tions [17]. It is an open question whether this result
may be extended to all Werner states or even to all
possible states. In addition to questions concern-
ing PPT operations, are there other classed of non-
global operation that can be useful? If reversibility
under PPT operations does not hold, do any other
classes of non-global operations exhibit reversibil-
ity?

More open problems in quantum information science
can be found in the Braunschweig webpage of open prob-
lems [168]. We hope that this list will stimulate some of
the readers of this article into attacking some of these
open problems and perhaps report solutions, even par-
tial ones.
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[136] J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002).
[137] R. Simon, E.C.G. Sudarshan, and N. Mukunda, Phys.

Rev. A 36, 3868 (1987).
[138] Arvind, B. Dutta, N. Mukunda, and R. Simon, Pra-

mana 45, 471 (1995).
[139] J. Williamson, Am. J. Math. 58, 141 (1936).
[140] G. Giedke, M.M. Wolf, O. Krüger, R.F. Werner, and
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