MERCREDI 11 MAI 2005 14 heures Salle Séminaire 5 Centre de Physique Théorique Marseille-Luminy Pierre Tisseur Laboratoire Génome et Informatique (Evry) Titre: Entropies toujours finies et exposants de Lyapunov d'Automates cellulaires multidimensionnels. Résumé: Pour un automate cellulaire agissant sur un espace de dimension supérieure ou égale à deux, la valeur de l'entropie métrique semble à priori être infinie ou égale à zero pour n'importe quelle mesure invariante que l'on sait construire. Nous proposons une nouvelle entropie prenant toujours des valeurs finies et dont la définition dépend de la dimension de l'automate. En dimension 1 cette definition correspond à l'entropie standard. Nous donnons ensuite une borne supérieure finie à cette nouvelle entropie qui dépend entre autre d'exposants de Lyapunov discrets directionnels.