MERCREDI 11 MAI 2005
14 heures
Salle Séminaire 5
Centre de Physique Théorique
Marseille-Luminy

Pierre Tisseur
Laboratoire Génome et Informatique (Evry)

Titre: Entropies toujours finies et exposants de Lyapunov d'Automates
cellulaires multidimensionnels.

Résumé: Pour un automate cellulaire agissant sur un espace de
dimension supérieure ou égale à deux, la valeur de l'entropie métrique
semble à priori être infinie ou égale à zero pour n'importe quelle
mesure invariante que l'on sait construire.
Nous proposons une nouvelle entropie prenant toujours des valeurs
finies et dont la définition dépend de la dimension de l'automate. En
dimension 1 cette definition correspond à l'entropie standard. Nous
donnons ensuite une borne supérieure finie à cette nouvelle entropie
qui dépend entre autre d'exposants de Lyapunov discrets directionnels.