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Abstract

This article is devoted to prove a stability result for two independent coefficients for a Schrödinger

operator in an unbounded strip. The result is obtained with only one observation on an unbounded

subset of the boundary and the data of the solution at a fixed time on the whole domain.

Let Ω = R × (d, 2d) be an unbounded strip of R
2 with a fixed width d > 0. Let ν be the outward unit

normal to Ω on Γ = ∂Ω. We denote x = (x1, x2) and Γ = Γ+ ∪ Γ−, where Γ+ = {x ∈ Γ; x2 = 2d} and
Γ− = {x ∈ Γ; x2 = d}. We consider the following Schrödinger equation





Hq := i∂tq + a∆q + bq = 0 in Ω × (0, T ),
q(x, t) = F (x, t) on ∂Ω × (0, T ),
q(x, 0) = q0(x) in Ω,

(0.1)

where a and b are real-valued functions such that a ∈ C3(Ω), b ∈ C2(Ω) and a(x) ≥ amin > 0. Moreover, we
assume that a is bounded and b and all its derivatives up to order two are bounded.
Our problem can be stated as follows:
Is it possible to determine the coefficients a and b from the measurement of ∂ν(∂2

t q) on Γ+?

Let q (resp. q̃) be a solution of (0.1) associated with (a, b, F , q0) (resp. (ã, b̃, F , q0)). We assume
that q0 is a real valued function.
Our main result is

‖a− ã‖2
L2(Ω) + ‖b − b̃‖2

L2(Ω) ≤ C‖∂ν(∂2
t q) − ∂ν(∂2

t q̃)‖2
L2((−T,T )×Γ+)

+ C

2∑

i=0

‖∂i
t(q − q̃)(·, 0)‖2

H2(Ω),

where C is a positive constant which depends on (Ω, Γ, T ) and where the above norms are weighted Sobolev
norms.
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