Thanks
to the advent of a second generation of instruments, we are at the dawn
of the first direct detection of gravitational waves (GW). GW are
expected to be emmitted in violent astrophysical events, possibly in
connection with other types of emission, observable in the
electromagnetic or neutrino spectra, such as, e.g., GRBs. This
motivates correlating future GW observations with those of conventional
astronomy. Developing such an multi-messenger astrophysics is a timely
effort that can be achieved by bringing together the communities
involved in both the observational and theoretical aspects. This school aims at bringing together experts from a wide range of disciplines, including specialists in GW sources and their modelling, high-energy physicists, phenomenologists or observers. The goal is to foster the exchange of expertise between the audience and the speakers representing their own scientific communities, and to contribute to training a new generation of young researchers in these fields. |
Gravitational
waves (GW) correspond to changes of the metric properties of the space
that propagate through the universe at the speed of light. Nowadays,
their direct detection has become an important challenge in physics, as
it will allow to thoroughly test the Einstein's General Relativity and
open a new window on the Universe with implications in astrophysics and
cosmology.
Among
the sources of gravitational waves, violent astrophysical events
(mergers, gravitational collapse) involving compact objects such as
neutron stars and black holes, may be accompanied by electromagnetic
radiation and particles (neutrinos, in particular) at high energy. The
observation of an electromagnetic counterpart (optical, X-ray, gamma,
radio...) and neutrinos (low or high energy), could then be a crucial
ingredient to identify the astrophysical origin of the GW signals.
CNRS is heavily involved in ground based detectors with Virgo.
The first generation has demonstrated the feasibility of these
experiments through scientific runs at the expected sensitivity and,
for lack of detections, has established interesting astrophysical
limits on sources. It also gave the opportunity to operate the various
detectors as a network and to take the first steps toward a
multi-messenger astronomy involving gravitational waves. The second
generation, due to come online in a few years with a 10-fold increase
in sensitivity (Advanced Virgo, Advanced LIGO...),
offers rich prospects and the promise of true gravitational astronomy.
In the longer term, the third generation European project, the Einstein
Telescope (ET), will allow us to probe the Universe in depth. ET is one of the "Magnificent Seven", the projects recommended by the ASPERA network for the future developments of Astroparticle Physics in Europe. For reasons of efficiency, gravitational wave science is a global effort. Extracting information on GW sources requires several interferometers operating simultaneously on different sites. The scientific communities in the United States (LIGO), Germany - United Kingdom (GEO600) and Italy - France and the Netherlands (Virgo) share technologies, R&D and theoretical advances, as well as data analysis methods. The European project ET will help improve this cooperation around the world. |
Training goals The
goal of this school is to train researchers in this field, to guide
them in their scientific career change where necessary, and to bring
them up-to-date through specialized courses and seminars covering the
latest developments. The ultimate goal is not only to meet the
requirement of a multidisciplinary approach by seeking informative
experts, but also to provide training about the latest techniques
connected with the discipline. Offering accommodation on site will
promote connections between the communities involved.
This school is primarily targeted at scientists, post-doctoral and PhD students in the fields of astroparticle physics, astronomy, theoretical physics and high energy physics, willing to acquire complementary skills and/or to change their research topic. Scientists from other fields are welcome if the topic appeals to them. A PhD level either in Astronomy, Astrophysics, Theoretical Physics or Particle Physics
|
Gravitational Waves - Multi Messengers: Gamma Ray Bursts, X-rays - High Energy
Neutrino - Compact Astrophysical Objects - Process and sources of High Energy Emission |
Scientific CommitteeMichel Boer, Astrophysique Relativiste, Théories, Expériences, Métrologie, Instrumentation, Signaux (ARTEMIS)
Josè Busto, Centre de Physique des Particules de Marseille (CPPM) Eric Chassande-Mottin, Astroparticule et Cosmologie (APC) Paschal Coyle, Centre de Physique des Particules de Marseille (CPPM) Bernard Degrange, Laboratoire Leprince-Ringuet (LLR) Yves Gallant, Laboratoire Univers et Particules de Montpellier (LUPM) René Goosmann, Observatoire astronomique de Strasbourg (UNISTRA) Stavros Katsanevas, Astroparticule et Cosmologie (APC) Jürgen Knödlseder, Institut de Recherche en Astrophysique et Planétologie (IRAP) Julien Lavalle, Laboratoire Univers et Particules de Montpellier (LUPM) Benoit Lott, Centre d'études nucléaires de Bordeaux Gradignan (CENBG) Frédérique Marion, Laboratoire d'Annecy le Vieux de Physique des Particules (LAPP) Jean Orloff, Laboratoire de physique corpusculaire (LPC CLERMONT) Etienne Parizot, Astroparticule et Cosmologie (APC) Guy Pelletier, Institut de Planétologie et Astrophysique de Grenoble (IPAG) Pierre Salati, Laboratoire d'Annecy-le-vieux de Physique Théorique (LAPTH) Roland Triay, Centre de Physique Théorique (CPT) |